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Abstract 
This paper compares two solutions for human-like 
perception using two different modular “plug-and-play”  
frameworks, CAVIAR (List et al, 2005) and Psyclone 
(Thórisson et al, 2004, 2005a). Each uses a central point of 
configuration and requires the modules to be auto-
descriptive, auto-critical and auto-regulative (Crowley and 
Reignier, 2003) for fully autonomous configuration of 
processing and dataflow. This allows new modules to be 
added to or removed from the system with minimal 
reconfiguration. CAVIAR uses a centralised global 
controller (Bins et al, 2005) whereas Psyclone supports a 
fully distributed control architecture.  
We implemented a computer vision-based human behaviour 
tracker for public scenes in the two frameworks. CAVIAR’s 
global controller uses offline learned knowledge to regulate 
module parameters and select between competing results 
whereas in Psyclone dynamic multi-level control modules 
adjust parameters, data and process flow. Each framework 
results in two very different solutions to control issues such 
as dataflow regulation and module substitution. However, 
we found that both frameworks allow easy incremental 
development of modular architectures with increasingly 
complex functionality. Their main differences lie in runtime 
efficiency and module interface semantics. 

Introduction 

Several software architectures for human-like perception 
have emerged over the past years in research areas such as 
computer vision, human-computer interaction and 
autonomous robotic platforms. Early examples are SIGMA 
(Matsuyama and Hwang, 1993) and VISIONS (Hanson and 
Riseman, 1988). More recent perception architectures 
include the Leeds People Tracker/ADVISOR (Siebel, 
2003), the Robust Tracker (Crowley and Reignier, 2003) as 
well as very advanced neural network-like perception 
systems like the Neuron-Like Processing Machine (NLPM) 
(Cohen, 2004). 
Computer vision research addresses challenging problems, 
requiring architectures that mix data flow and control 
structures in complex ways. The interest in modular 
frameworks rises from the need to explore relatively large 
variations in architecture during their construction. 

Variations to be explored can range from simple changes in 
how parameters are tuned to module swapping. The 
explorations are made over weeks or months; final 
solutions will certainly require parameter tuning at runtime 
and may even require dynamic module swapping. 
Although prior approaches tackle many of the same kind of 
challenges such as data flow regulation, process scheduling 
and managing situations of high data rates between many 
modules which need more resources than the system can 
provide, each specific application and implementation has 
unique properties which have to be addressed. A plug-and-
play perception architecture should provide solutions to the 
common problems while providing the flexibility each 
module needs for independent processing of information. 
The CAVIAR framework (List et al, 2005) is based on past 
research by (Brown and Fisher, 1990) (Crowley, 1995) 
(Crowley and Reignier, 2003) and is designed specifically 
to allow multiple concurrent implementations of equivalent 
modules to work in competition with each other, to be 
plugged in to compare different approaches to problems 
given varying conditions. A key research goal is 
investigating the control mechanisms and algorithms 
needed to allow this flexibility by offline learning of 
module parameter spaces (Bins et al, 2005). 
The Psyclone framework (Thórisson et al. 2004, 2005a) by 
Communicative Machines is based on prior research on 
interactive real-time systems (Thórisson, 1999) and their 
construction (Thórisson et al. 2004).  A key goal of this 
framework is to allow the creation of flexible systems, 
enabling researchers to test various architectures quickly 
through a plug-and-play modular approach, and to enable 
A.I. researchers to share their work more effectively. 
This paper investigates the solutions offered by each 
approach and compares the resulting architectures when 
applied to the task of monitoring human behaviour in 
public areas through vision. We will look at differences in 
the approach to runtime control of parameters and the flow 
of data, and how new modules can be inserted into an 
existing system during its development stages to 
comparatively develop a modular system. Other differences 
between the frameworks that directly affect the present task 
will also be discussed, such as run-time performance and 



semantics of module interfaces. The actual vision 
algorithms used are identical in both cases. 
The next sections will provide a quick overview of the 
general features of the CAVIAR and Psyclone frameworks, 
focusing on the features that are different between the two. 
The solutions to the vision problem are then presented for 
each framework, and we conclude by briefly discussing the 
merits of each one. A comprehensive overview of the two 
frameworks would be too much for this paper. We review 
mainly those parts which we believe to be sufficient and 
relative to the purpose of the comparison. The reader is 
directed to (List et al. 2005) and (Thórisson et al., 2005b) 
for more detail. 

CAVIAR 

The CAVIAR system is based on one global controller and 
a number of modules for information processing. Each 
module provides a complete description of itself using 
CVML (List and Fisher, 2004) including its input and 
output datasets and a full list of public parameters. Each 
parameter description includes recommended usage such as 
minimum, maximum and incremental step as well as 
dependencies on other parameters. 
The implementation includes a Base Module which 
contains all the common module functionalities such as the 
interface to the controller and to other modules for 
managing parameters. This way module implementers only 
have to deal with their own algorithms without worrying 
about bookkeeping tasks. 
After each run (where one set of input data is processed to 
produce output data) each module will report back to the 
controller on the overall quality and quantity of the results. 
This is called the high-level feedback and the Base Module 
adds information about time and resources spent. 
Each module can be auto-regulative in that it receives 
feedback from the controller and other modules in the form 
of more of this output and less of that output in terms of 
quality and quantity. The module may know better than 
anyone else how to best achieve this by regulating its own 
parameters or perhaps switching to use another algorithm.  
A special kind of modules called Agents are used for 
simple measurements such as overall scene brightness. 
They assist the controller when making choices or 
providing feedback. 
The CAVIAR controller is a global implementation of a 
classical system controller. At startup it reads a list of 
possible modules to use along with the overall goal of the 
system in terms of available input and desired output. 
Based on this and the auto-description of each module the 
dataflow is computed including which modules are needed 
in which flow configuration and whether one or more 
modules are each other’s equivalent. 
The controller can run in two modes, an online real-time 
mode and an offline learning mode. During the offline 
learning the controller runs through one or more video 
sequences where ground truth labelling has been provided. 
It can step-by-step compare its own results to the ground 

truth and for each module explore parts of the parameter 
space to learn which parameters have which influence on 
the output of that module and the system as a whole. It 
stores this knowledge in either of two ways, neural 
networks or dynamically created rules, to make use of the 
learned knowledge in the online mode when real-time 
constraints prevent any complex exploration of the 
parameter space, but modules nonetheless need to be tuned 
to deal with varying external conditions. The learning 
phase can also be used to determine which equivalent 
modules work best in which circumstances. 
CAVIAR modules communicate data, feedback and control 
information through a fixed API, described in detail in (List 
et al. 2005). All communication uses CVML (List and 
Fisher, 2004). 
The CAVIAR architecture is written in a combination of 
C++, Scheme and logical rules using Clips. It makes use of 
both the Imalab image processing library (Lux, 2004), 
Intel’s OpenCV (Bradski, 2000) and the CoreLibrary (List 
and Fisher, 2004). The modules communicate with each 
other and the controller via a public API which can be used 
either directly in-memory, through files written to disk or 
across the network using TCP communication. Data 
content is transferred using CVML (List and Fisher, 2004). 

Psyclone 

Psyclone is a generic framework for AI, which includes 
support for multimodal perception of vision, audio, speech 
and other sensor input, as well as modular cognitive 
processing and multimodal output generation, such as 
speech and animated output. 
Psyclone implements an open standard called OpenAIR1 
for both local and networked messaging and data 
transmission. It is a proven protocol which contains 
semantic and ontological specification of information. 
The Psyclone framework consists of a number of 
information dispatchers called whiteboards (Thórisson et 
al., 2005b) and any number of modules. An underlying 
support system facilitates system setup and maintains basic 
system information about modules and dispatchers. 
Each whiteboard functions as a publish/subscribe server to 
which information is posted and from which information is 
dispatched to modules which are subscribed to that 
particular type of information. A whiteboard will keep data 
for a period of time, stored in a large searchable database 
for later retrieval by modules needing past information. 
When new data is posted to the whiteboard it consults the 
subscriptions and will make sure that all subscribed 
modules receive the information they requested, including 
retrieval of any additional past or current data. 
Like CAVIAR, each module has a full description of itself 
which is usually entered into the central configuration file, 
but can be manually overwritten by the module at any time. 
This description includes a list of public parameters, a list 
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of subscriptions including data types and dispatchers, 
additional information to be retrieved along side the 
triggering data, and the output data types and destination 
dispatchers. It also includes information about the actual 
module code to run which is automatically started either 
from a shared library or an external executable. 
To manage the runtime behaviour of modules Psyclone 
supplies the concept of contexts, which are globally 
announced system states. Each module can be assigned one 
or more such contexts and will not run without at least one 
of them being true. 
The dataflow is regulated completely autonomously based 
on module priority and subscriptions in different contexts, 
as is the computations that each module performs. There is 
no overall global control monitoring every part of the 
system to make sure that the right modules perform 
adequately based on its inputs and outputs. However, local 
control modules can be created to monitor the performance 
of individual or groups of modules and make decisions 
about when to change parameters or even the dataflow by 
changing contexts. This way control can be achieved in a 
distributed way where control units can monitor and 
regulate anything from a single module to every module in 
the system, and they base their decisions on current and 
past data available from one or more Whiteboards. 
The Psyclone architecture is written completely in C++ and 
runs on a number of operating systems including Unix, 
Windows and Macintosh. It is based on the CoreLibrary 
(List and Fisher, 2004) and supports the OpenAIR protocol 
for local or network communication and CVML (List and 
Fisher, 2004) for information content. Modules are created 
either as Cranks in C++ to run inside Psyclone or as Plugs 
in languages such as C++, Java and LISP to run outside 
Psyclone. 

Application: Computer  Vision 

We applied the two architectures to the practical problem 
of using a single static camera to monitor human behaviour 
in public scenes such as streets or shopping centres, where 
a few tens of people can be in the scene at the same time. 
The modular approach taken includes image acquisition, 

low-level image analysis for dense and sparse image 
features, tracking and detecting movement patterns of 
objects and finally analysing these to identify the objects’  
roles. We first defined these modules in the CAVIAR 
framework and the resulting dataflow can be seen in Fig. 1. 

In the top left corner the Grabber module outputs the 
RawImage dataset which contains an image acquired from 
the camera with a timestamp. The RawImage dataset is 
used by three modules, the DenseImageFeatures module, 
the SparseImageFeatures module and the Tracker module. 
The latter also uses the outputs from both the 
DenseImageFeatures and the SparseImageFeatures modules 
and based on all this data will output a list of 
TrackedObjects. There are now two Movement modules 
which both analyse the TrackedObjects for movement 
patterns and produce MovementOutput. The Role module 
uses this to assign roles to each TrackedObject and from 
these roles the Context module determines the context of 
the scene being monitored. 
An example could be three people being tracked in a 
shopping centre. Each walks very slowly near shop 
windows, stop frequently and none of them interact with 
the others. The movement module will produce information 
on their slow and stopping movement, which the role 
module will assign to be a browsing behaviour. This 
becomes increasingly complex when more people are in the 
scene interacting with each other and for more information 
on this see (Bins et al, 2005). 
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Fig. 1.  The system data and processing flowchart from CAVIAR 
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The equivalent process and data flow produced by the 
Psyclone system is shown in Fig. 2. There are more 
elements because each data structure is listed once for 
every output and once for every input. This flow also 
includes the whiteboards from where the data is sent to the 
modules which have subscribed for this and stored for later 
retrieval. 

Defining the modules 
The overall idea behind both frameworks is to make it 
possible for people with topic-specific technical skills to 
implement modules in their areas of expertise into a system 
containing other people’s work taken from a library of 
existing modules. Module implementation and testing 
should be quick without having to struggle with issues like 
network communication and dataflow.  
In both CAVIAR and Psyclone modules are created using 
standard third-party libraries and can be developed and 
tested in the system directly. A module can be created with 
only a few lines of code and from there gradually increase 
the complexity while tested in the architecture using real 
data where other modules are using the output. 
Equivalent modules or groups of modules can replace or 
compete with others to provide better or more confident 
results in a changing environment. 
When creating a module in CAVIAR one can either choose 
an existing module from the project or create a new module 
from scratch. Either way, the object constructor code has to 
set the module description in XML which includes 
information about parameters and input and output 
datasets. 

Fig. 3 shows the CAVIAR module description for the 
SparseImageFeatures module. It includes two public 
parameters, one called MaxFeatures which is used for 
setting a maximum number of features to output, and the 
other called Sigma, which is a scale factor. The module 
also specifies two input datasets, RawImage and 
DenseFeatures which it needs to compute its output dataset 
called SparseFeatures, containing the variables Time and 
FeatureVectorList. 

Other than setting the description one needs to define a 
run() function which computes and stores the output 
dataset from the input data and parameters. Based on this 
information, the controller will include the module in the 
system dataflow after the Grabber and DenseImageFeatures 
modules and before the Tracker which needs the 
SparseFeatures dataset, as seen in Fig. 1. 
When creating the same functionality in Psyclone one can 
define the module in the central XML configuration file. 
This definition is seen in Fig. 4 and like in CAVIAR it has 
two parameters, requires two inputs and produces one 
output.  

In addition, using the Psyclone context mechanism, this 
module can choose to change the system context if the 
scene is too dark or bright. Typically, vision systems would 
either use a module which could handle this; CAVIAR is 
able to swap out a module with another for cases like this. 
The global context system in Psyclone is a unique construct 
that provides for an even better solution to this problem.  
The run() is specified as the function SparseFeaturesCrank 
in the library called Image, which contains the code to 
receive the input data and with the use of the parameters 
should produce the output dataset. The module’s 
subscriptions results in the data flow seen in Fig. 2. 

Plugging in an equivalent module 
Initially we defined the systems with only one Movement 
module after which we decided that we wanted to add 
another module with a slightly different algorithm. In both 
architectures we renamed the Movement module 
Movement1 and added an identical module Movement2 
which only varied from the original by the code it used to 
compute the output.  
The CAVIAR system detected that this new module was 
equivalent with Movement1 as shown by the crossover 
lines between them in Fig. 1. The Psyclone system added 
this new module as another source of the output dataset 
MovementOutput which in turn is made available to the 
Role module in addition to the MovementOutput dataset 
produced by Movement1. 
The main difference is that in CAVIAR the decision on 
whether to use the output from Movement1 or Movement2 
is made by the controller based on the feedback of the 

<description> 
   <parameters count="2"> 
       <parameter name="MaxFeatures" type="integer" optional="no"> 
             <description>Maximum number of features</description> 
             <range from="1" to="1000" step="5" /> 
             <default>100</default> 
       </parameter> 
       <parameter name="Sigma" type="float" optional="no"> 
             <description>Scale factor</description> 
             <range from="0" to="1"/> 
             <default>0</default> 
       </parameter> 
    </parameters> 
    <dataflow> 
       <inputs count="2"> 
            <input dataset="RawImage" /> 
            <input dataset="DenseFeatures" /> 
       </inputs> 
       <outputs count="1"> 
            <output dataset="SparseFeatures"> 
                <variable name="Time" type="Time" /> 
                <variable name="FeatureVectorList" type="FeatureVectorList" /> 
            </output> 
       </outputs> 
   </dataflow> 
</description> 

Fig. 3: The CAVIAR description for the DenseImageFeatures module. 

<module name="SparseImageFeatures"> 
 <description> 
  Produces sparse features from the raw image and dense image features 
 </description> 
 <parameter name="MaxFeatures" type="Int" max="1000" min="0" default="100" /> 
 <parameter name="Sigma" type="Double" max="1" min="0" default="0"/> 
 <spec> 
 <context name="Scene.Normal"> 
  <phase id="Process incoming messages"> 
   <triggers> 
   <trigger from="ImageData" type="Input.Video.RawImage"/> 
   <trigger from="ImageData" type="Features.DenseFeatures"/> 
   </triggers> 
   <cranks> 
    <crank name="Image::SparseFeaturesCrank"/> 
   </cranks> 
   <posts> 
   <post to="ImageData" type="Features.SparseFeatures" /> 
   <post to="ImageData" type="Psyclone.Context:Scene.Dark" /> 
   <post to="ImageData" type="Psyclone.Context:Scene.Bright" /> 
   </posts> 
  </phase> 
 </context> 
 </spec> 
</module> 

Fig. 4.  The Psyclone definition for the DenseImageFeatures module. 



modules and information from Agents. In Psyclone both 
datasets are made available and it is up to the Role module 
to compare the two and decide which one to use. A detector 
module can also be created to switch on or off the 
appropriate Movement module or to provide additional 
information assisting the Role module in deciding which 
data to use. 
In theory it is easy to create modules which do very simple 
isolated tasks, however, in the real world of research testing 
the functionality of a module during development can be 
difficult without proper insight into what the system is 
doing step by step. Although CAVIAR provides feedback 
mechanisms, having ‘a look inside the running system’ is 
often desirable and Psyclone provides this via a built-in 
monitoring system called psyProbe. With a standard web 
browser developers can monitor every activity in the 
system, from timestamped information on the whiteboards 
to specific content of individual messages. The running 
system can be temporarily halted by switching context and 
manual message posting can introduce new data. This 
proved to be an important functionality when developing 
the vision architecture. 

The running system 
When running the systems the CAVIAR controller starts by 
initializing all the modules and fully calculating the 
dataflow. It then runs each module in turn with the specific 
goal to maximise the availability of the datasets needed. 
After each module has completed the controller obtains the 
feedback with information about the quality and quantity of 
the output as well as the time and resources spent. 
The Psyclone system starts by creating all the modules, but 
unlike CAVIAR it does not compute the dataflow as this is 
done dynamically as the system runs based on the global 
system contexts and module states. The Grabber acquires 
the first image from the camera, posts this to the 
Whiteboard ImageData which in turn triggers the 
DenseImageFeatures module and so on. 
In CAVIAR the controller would compare the feedback 
from the two equivalent modules Movement1 and 
Movement2 and based on the quality report, as well as 
information from relevant Agents, choose which output to 
use. If the controller had access to offline learned 
information it would furthermore have been able to 
evaluate the quality statement from each module by adding 
its own confidence weight to the ‘supposed’  quality. 
The same two modules in Psyclone both added their output 
to the TrackedObjects Whiteboard which in turn triggered 
the Role model. Because of the identical timestamps for the 
triggering datasets the Role model could see that the 
information was produced based on the same input, yet by 
different modules, and could use either or both for its own 
processing, without needing additional help to choose 
between them. 

Results 

We will now review the main differences between the two 
frameworks, from an architectural standpoint.  
The main difference between the solution implemented in 
CAVIAR and Psyclone relates to the different way in 
which they enable global versus distributed control. 
CAVIAR completely relies on one global controller that 
knows everything about every module and consequently 
also has to deal with everything and every module. It has to 
know about modules individually, in groups and as a whole 
system and governing so many layers of information is 
quite a big task. 
Psyclone uses completely distributed control; no global 
control mechanisms are provided as default. However, 
monitoring and control can be added to regulate any level 
of the system, from individual modules to the global state. 
The benefit is that one can construct a hierarchy of control 
where no individual controller has to know anything 
beyond the issues it is dealing with, much like (Crowley 
and Reignier, 2003), although they require a controller to 
be added for each module and each small group of modules 
in turn, making the Psyclone design simpler. 
The drawback of a distributed control approach is that no 
single controller knows everything and it is therefore easy 
to lose sight of what is actually going on globally when 
trying to mend things locally. Psyclone imposes less 
structure on the design; increased flexibility puts a higher 
burden on the designer to ensure the soundness of the 
architecture. 

Dynamical dataflow 
The dataflow in both frameworks is automatically 
generated from the modules’  XML auto-description. In 
CAVIAR the paths are initially created at startup and can 
be modified by the controller at any time, both to use an 
equivalent group of modules but also to change the flow 
completely if needed. The knowledge needed to decide 
about such changes is usually learned during the offline 
runs and consists of a combination of neural network 
decisions or logical rules. In other words, the controller 
will choose a change from a finite number of possible 
actions learned from past experience. 
In Psyclone the change of dataflow can happen on many 
levels. Equivalent modules can, as in CAVIAR, compete 
with the quality of their results and decision modules can 
choose to activate or deactivate modules to change the flow 
of information. A Psyclone module mechanism allows a 
designer to put multiple named methods in each module 
and construct rules that determine complex conditions for 
using each method. This way a module can cycle through 
this set of methods at runtime, using whichever method is 
appropriate at the time. In effect it resembles a vast 
parameter change in CAVIAR, but in CAVIAR a single 
module would have to implement all the different 
algorithms in one mesh and use parameters to choose 



between them. This would make the module 
implementation extremely complex and very hard to work 
with. 
Any perception system will naturally go through many 
situations in which data processing will need to be done 
slightly or very differently from other situations. In 
CAVIAR each situation would activate a specific set of 
modules, probably different from the set used in other 
situations. When handling a large number of situations 
modelling and regulating the parameters of so many 
modules required could become unmanageable, especially 
if offline training is needed. The use of contexts in 
Psyclone solves this problem and adds another level of 
modular control. Contexts allow modules in Psyclone to 
radically change their behaviour based on the overall 
requirements of the system. A module could in one context 
be searching for one thing and in another doing something 
very different, using a similar or completely different 
algorithm. This mechanism can be used to reduce the 
number of separate modules in a system while still allowing 
the implementers to deal with disparate situations 
independently. 

Handling the unexpected 
Both resulting architectures are able to handle sudden 
changes to the perceived environment such as lighting 
changes, but they deal with these changes in very different 
ways. 
The architecture implemented in CAVIAR uses agents to 
detect such changes and based on their output, changes in 
module parameter settings or even the global dataflow can 
be made. The CAVIAR controller is able to compensate for 
this faster if prior offline training included similar changes. 
The controller may then know which modules are more 
sensitive to these changes and which parameters to tune to 
stabilise the output from these. These decisions are made 
using either neural networks or learned logical rules. With 
no prior training the CAVIAR controller relies on the auto-
regulation of each module to make adjustments for such 
situation, however, tuning them to work well under many 
varying conditions is very hard. This is one of the main 
reasons that knowledge-based systems have failed in the 
past (Draper, 2003). 
Psyclone has no built-in support for offline learning, 
however one can create sets of control modules which 
modify parameters and monitor the results, in a kind of 
dynamic equilibrium. If going one way turns out to be 
wrong, decisions will be made to counter this rather than 
knowing how to solve the global problem as a whole. All 
modules, including control modules, have full access to all 
data in the system via the whiteboards, past and present 
(within reason) and can ultimately make use of contexts to 
get out of a situation that cannot be remedied by parameter 
tuning. Additionally, these modules could be configured for 
offline learning of the parameter spaces of individual or 
groups of modules and store this knowledge in another 
Psyclone construction called a Catalog for later online use. 

Pr ior ities 
At runtime, different datasets may be needed at different 
times and with varying degrees of urgency. In CAVIAR a 
module will be activated when the data it needs is 
available; there is no notion of priority of data or 
processing. This means that when the system is stressed the 
more important data is treated with the same priority as 
analysing more subtle information. 
In Psyclone each module has two priority settings, for data 
transmission and for runtime. The former determines when 
information is made available to the module by specifying 
the relative importance of a dataset compared to other sets, 
and the latter the relative processing priority of each 
module over others. This allows the system designer to 
prioritise certain information paths over others, creating a 
hierarchy of data significance, from the absolutely critical 
to the supernumerary while also taking into account the 
computing cost of producing these. 

Ease of Use 
We have discussed the main architectural differences; we 
will now look at some numbers regarding usage and 
runtime behaviour. 
 Table 1 shows the time it took to work with the basic and 
advanced building blocks of creating a modular system, 
from installing the example system, creating modules from 
the built-in pool of examples and new modules with own 
code, to working with control. The work was done by a 
single developer who knew the vision application 
intimately, as well as both frameworks. Basic control 
consisted of simple parameter tweaking and more advanced 
control included also changing the flow of data. Although 
the data is anecdotal for the two systems built, we believe it 
to be indicative of there being very little difference between 
the two frameworks in terms of usability, for someone who 
is experienced in the two systems.  
 

Task CAVIAR Psyclone 
Time to install the example system 3 hour 1 hour 
Time to define a built-in module 1 hour 1 hour 
Time to create a new module 2 hours 1 hour 
Time to implement basic control Built-in 1 hour 
Time to implement advanced control 1 hours 2 hours 

 
Table 1.  Ease of use and developing new modules and control. 

Runtime Per formance 
Table 2 shows the runtime performance characteristics 
computed for the two systems. Since the vision algoritms 
are completely identical in the two architectures the 
numbers expose the efficiency of the implementation of 
each framework, CAVIAR and Psyclone. We tested three 
modules performing low to medium image analysis tasks 
(two edge detectors and one optical flow); the numbers 
reflect the difference between the respective ways in each 



framework of handling the flow of voluminous data and 
system control. 
 

Task CAVIAR Psyclone 
Average time to run all three modules 845 ms 65 ms 
Same when changing 3 parameters 1212 ms 86 ms 
Average time per parameter 122 ms 7 ms 

 
Table 2.  Runtime performance comparison. 
 
The third row in Table 2 was calculated by taking the 
difference between the average runs with and without 
parameters and then dividing by three. 
 
Lastly, we measured the time to run the whole system 
through 500 frames of video. This in CAVIAR included the 
system controller and in Psyclone three control modules to 
adjust the dataflow in case of changing conditions.  
 

Task CAVIAR Psyclone 
Time to run 500 frames 21 min 3.5 min 
Frames per second 0.40 fps 2.38 fps 

 
Table 3.  Overall performance comparison. 

Summary 

We have found that it is very easy to use existing and to 
implement new vision modules in both the CAVIAR and 
Psyclone frameworks. The main difference between the 
two frameworks lies in the runtime control where CAVIAR 
chooses a global control approach and Psyclone a fully 
distributed control approach. Modules are in both 
frameworks created using ones own existing code and 
libraries, and then integrated into the system using an 
XML-based description of its parameters, the required 
inputs and the outputs produced. 
Although modules in CAVIAR and Psyclone are created 
differently the basic principles are much the same and the 
central configuration, as well as the XML-based module 
description, makes it easy to test a large number of 
approaches to solving different scientific problems. 
Each framework has a few features that the other doesn’ t; 
none of those features were essential for building the vision 
architecture described here.  
Besides the solutions being different in the two 
architectures, and thus having implications for maintenance 
and extensions, the largest difference between the two is in 
the runtime efficiency inherent in the frameworks: Psyclone 
outperformed CAVIAR. Since Psyclone is intended for 
building real-time interactive systems and is available both 
in a commercial and a free research configuration, this is 
not too surprising. Psyclone also has extensive online 
documentation and support. This is likely to factor into the 
decision when choosing between the two frameworks. The 
CAVIAR website has a number of human-labelled video 
sequences available for download.  

More information about the two architectures we refer the 
reader to the MINDMAKERS.ORG3 and the CAVIAR4 
website, which includes a number of human-labeled video 
sequences available for download. 
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