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INTRODUCTION 
A number of present-day problems act to hold back progress in the field of 
artificial intelligence (A.I.), both theoretical and pragmatic. Among the most 
serious pragmatic issues has to do with integration and large-scale systems 
construction, as much recent work on humanoids and interactive robots has 
shown (cf. Thórisson 2005a, Pagello et al. 2004, Simmons et al. 2003, 
Maxwell et al. 2001, Bischoff et al. 2000, Martinho et al. 2000, Fink et al. 
1996, 1995). Numerous barriers must be faced by any researcher wanting to 
reuse systems developed by others in the creation of large integrated A.I. 
systems. The barriers are caused for example by the use of different 
programming languages, by different operating assumptions, and by lack of 
computing power. These barriers prevent integration of isolated efforts and 
thus the creation of larger, more capable A.I. systems.  
 
This paper presents a framework addressing many of the pragmatic issues 
the field has to deal with and intended to significantly speed up research 
advances in A.I. The framework addresses three main issues: Building large 
systems, connecting heterogeneous software components and collaborating 
effectively. The first prong in our four-prong approach to these issues is a 
methodology for creating and managing large, modular systems. The second 
prong is an API for facilitating integration of code developed by different 
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authors at different times. Our third component is a software platform that 
uses the API and makes it significantly easier to integrate software written in 
different programming languages and create single systems running on many 
different computers. Finally, a fourth component is a forum for code 
exchange, software integration and collaboration.  
 
The motivations for our four-pronged approach are numerous. One of the 
main challenges of A.I. is complexity management. The complexity is quite 
different from that encountered in e.g. computer graphics, where a small set 
of basic principles applied to a somewhat larger number of object types 
results in well-understood and predictable behavior, enabling the power of 
graphics systems to grow at roughly the same rate as the hardware. Not so in 
artificial intelligence, where the complexity stems from the need to coordinate 
a large number of functions at multiple levels of detail, to serve a compound 
set of high- and low-level goals. 
 
To understand intelligence fully a study of every aspect of intelligent behavior 
needs to be studied. Our interest is therefore in the full spectrum of intelligent 
processes, from planning to perception, animation to emotion, operating 
autonomously. Included in the list is realtime operation in real environments, 
such as cognitive robotics and communicative virtual humanoids.  
 
One of the main assumptions behind this work is that a human mind, or at 
least significant portions of it, can be modeled through the adequate 
combination of interacting, functional machines, or modules. The inspiration 
for our approach comes from several sources, two of which reflect the views 
of important contributions to the field. First, we agree with Minsky's proposal 
(1986) that a mind is composed of a multitude of heterogeneous, interacting 
components. Our methodology and software foundation directly supports the 
construction of such systems. Second, Brooks (1989) has argued that a focus 
on isolated cognitive simulators, instead of whole cognitive beings, has been 
leading the field astray. We agree with this view and would add that not much 
has changed since the argument was made.  
 
The motivations for our work go further. There is a serious lack of incremental 
accumulation of knowledge in A.I. and related computer graphics. By 
supporting re-use of prior work we hope to enable the building of increasingly 
powerful systems, as core system elements do not need to be built from 
scratch.  
 
This is not an easy challenge. Much software has been written in the last two 
decades for handling cognitive, sensory, and motor tasks, but these are 
typically implemented in isolation, in various programming languages, and 
with a wide range of background assumptions about the operating 
environment. There is thus a pragmatic kind of complexity with which the A.I. 
practitioner must cope: The broad set of skills required to create and/or 
configure the necessary systems for processing input and output in these 
areas. The problem is exacerbated in tasks such as that of building e.g. large 
virtual worlds with simulated inhabitants. Such systems cannot be built – from 
scratch or from off-the-shelf components – without bringing together a large 
team of experts in each of the fields that such a system naturally 
encompasses. Our methodology aims to help coordinate such efforts.  
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As mentioned above, we take a four-pronged approach to A.I. integration. The 
paper is organized as follows: We will first discuss related research, 
categorized into the four main threads described above. Then we will present, 
in order, the Constructionist Design Methodology, the routing and message 
specification, called OpenAIR, the software development platform, called 
Psyclone. Following this we will describe two systems that were constructed 
using these elements. Finally we describe the MINDMAKERS.ORG effort. 
 

BACKGROUND & RELATED WORK 
Related research could be grouped in several different ways: Efforts to 
promote collaboration and interaction between researchers, systems to 
facilitate and manage integration of components, message and routing 
protocols, and design methodologies. Rather than discussing each of them 
separately we will discuss them in combination.  
 
One of the major factors separating prior efforts to address communication 
among modular systems is selection of communication model, which 
traditionally has either been of the object-oriented type or of the agent-based 
type.  
 
CORBA1 is a relatively general technology that allows transparent 
communication between programs running on multiple computers that are 
written in different languages. CORBA takes the object-oriented approach: An 
object makes a request for a service or for information, and this request is 
brokered by a central server, simulating an extended function call. This 
general mechanism works well for systems that can assume a larger temporal 
granularity than the network can provide. In real-time systems, however, this 
assumption is both simplistic and insufficient. An extension to CORBA, Real-
time CORBA2, is meant to address this shortcoming in the original design. 
However, because CORBA and other object-oriented approaches (e.g. DCOM 
(Microsoft 1998)3 try to make the whole system behave like one big computer 
program, it becomes cumbersome to deploy and debug, in many cases, and 
impossible to deploy in some cases, especially in systems where real-time 
performance is paramount. 
 
The alternative to the object-oriented approach is the agent-based approach, 
which relies on message-based routing. Several notable projects have been 
started in recent years focusing on this approach, among them KQML4, and 
the more recent efforts related to grid computing5. KQML (Knowledge Query 
and Markup Language) was an initiative that predates most of the current 
work in this area and provided a framework for talking about message-based 
machine communication that was modeled after natural language 
performatives (Searle 1969). While providing a boost for the subsequent 

                                                
1 http://www.corba.org/ 
2 http://www.cs.wustl.edu/~schmidt/TAO.html 
3 http://www.microsoft.com/com/wpaper/default.asp#DCOMpapers 
4 http://www.cs.umbc.edu/kqml/ 
5 See for instance http://www.naradabrokering.org/ 
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semantic Web effort6, it suffered from a semantic-pragmatic confusion: The 
“envelope” representation of messages and the surface representation of its 
content was not sufficiently separated. This has been addressed in some 
subsequent efforts.  
 
Narada7 is an example of a system that has solved numerous problems 
regarding message-based routing, including communication through firewalls. 
However, Narada has only been implemented in Java, and a practical 
problem with Java is that many real-time applications may require a native 
C/C++ implementation. So instead of being pure Java the system loses a lot 
of its platform independence while at the same time possibly running more 
slowly than a clean native implementation in C/C++ would. Speed is just one 
reason why someone might want to use one programming language over 
another: Any feature of a particular programming language might be a reason 
for an A.I. practitioner choosing it over another language, which means that 
the solution must be cross-language. A requirement of the present work is 
that the message services be light-weight and result in relatively easy-to-use 
adapters for every relevant programming language.  
 
A system as big as Narada8 is in many ways unwieldy; with a goal of solving a 
fairly large set of design problems the footprint becomes prohibitively large for 
a number of uses, for example, it depends not only on Xerces9 and Xalan10, 
both which are fairly large libraries, but about 10 other external libraries. This 
makes it difficult to port the system to other programming languages, and to 
deploy it on platforms with restricted memory sizes. A related problem, which 
it shares by CORBA, is that it is not simple to set up or use.  
 
The emphasis on realtime in the present work, mixed data types and support 
for both “push” and “pull” data transfer makes many of the prior systems 
insufficient. CORBA, for example, only provides a “pull” mechanism. 
Blackboards (Adler 1989, Dodhiawala 1989, Selfridge 1959) are a general 
way of addressing some of these issues. Thórisson (1998, 1997) used 
blackboards with a (non-dynamic) publish-subscribe routing protocol to enable 
inter-module communication: Modules posted data to a central blackboard 
server; that data was in turn delivered to subscribed modules. Modules could 
also retrieve old messages from the blackboards.   
 
In addition to the above mentioned features, however, a platform for 
interactive A.I. systems must have temporal accountability, i.e. the system 
must be able to track of, and make available to elements in the architecture, 
the timing of events and delays in the system. Except for temporal 
accountability, systems such as Elvin11 and OAA12 (Martin et al. 1999) have to 
a smaller or larger extent addressed the above requirements. Elvin is a 
content-based router with a central routing station. The system has been used 

                                                
6 http://www.w3.org/2001/sw/ 
7 http://www.naradabrokering.org/ 
8 The full system counts more than 1200 classes and subclasses organized into over 130 packages. 
9 http://xml.apache.org/xerces2-j/ 
10 http://xml.apache.org/xalan-j/ 
11 http://elvin.dstc.edu.au/ 
12 http://www.ai.sri.com/~oaa/ 
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in some systems with good results (Johnson et al. 2004), showing that the 
publish-subscribe approach is a powerful way to construct modular A.I. 
systems. The OOA is a hybrid architecture that relies on a special inter-agent 
communication language (ICL) – a logic-based declarative language which is 
good for expressing high-level, complex tasks and natural language 
expressions. While this is precisely what is needed for many A.I. applications, 
it requires a special-purpose parser, and makes it necessary for all agents in 
the system to contain this parser, which makes it harder to integrate 
heterogeneous components to create a single system. This shortcoming is 
also shared with another similar effort from FIPA13: The FIPA message and 
routing specification uses a special syntax for messages, requiring it to use 
non-standard parsers. A more general way of representing the outermost 
“envelope” of a routed message would be to use XML. This achieves a higher 
level of generality in the outermost layer while allowing the content of such 
messages to be represented in any applicable language, including ICL. 
 
While all of the above approaches have pros and cons, and many may come 
close to being usable as a basic foundation for integration in cognitive robotics 
and interactive applications, the best ones still fall short because time is by 
and large an ignored problem: Temporal information is only managed within 
the agents or processing nodes themselves, but not in the transmission 
infrastructure. This means that a receiver of a message cannot know now 
long ago the message was posted and thus how long ago its content was 
collected. Message and stream time stamping, as well as quality of service via 
prioritized scheduling, are functionalities still missing in CORBA and most of 
the other message-based and publish/subscribe-based approaches, including 
EQUIP14 (Greenhalg 2002), Elvin,15 OOA (Martin et al. 1999) and the FIPA 
message and routing specification.  
 
The object-oriented model of distributed computing can be expected to be 
overtaken by the agent/message model. Examples showing the benefits of 
the agent/message-based architecture, especially those making use of 
blackboard technology, are already showing up in the literature (c.f. Maxwell 
et al. 2001, Thórisson et al. 2004). 
 
Few design methodologies have been developed in A.I. One could perhaps 
try to classify the work of Brooks (1986) on the subsumption architecture as a 
kind of design methodology, it seems much closer to being a theory of 
intelligence, as are other efforts such as for example Soar (Newell 1990) and 
frames (Minsky 1974). With a design methodology we are referring to 
engineering methodologies such as pair programming16 and object-oriented 
programming. A design methodology is more general than the principles 
touted in A.I. such as subsumption architectures, fuzzy logic, artificial neural 
nets and similar.  
 
While many software development methodologies – such as those mentioned 
above – can be applied directly in the development of A.I. systems, they do 

                                                
13 http://www.fipa.org/ 
14 http://www.equator.ac.uk/PublicationStore/2002-greenhalgh.pdf 
15 http://elvin.dstc.edu.au/ 
16 http://www.pairprogramming.com/ 
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not deal with the special issues arising in this effort that is different from 
traditional software development. Frequently the development of A.I. software 
relies on an untested approach to, or analysis of, a problem. In this way A.I. 
systems development is much more like that of simulation development, 
where the natural system to be simulated seldom has been simulated before 
and certainly has not been modeled in the particular way that the scientists 
are trying it most of the time. When looking at the methodologies applied in 
simulation science, however, one finds that the methodologies there, such as 
discrete simulation (cf. Stchedroff & Cheng 2003, Pidd & Castro 1998) rarely 
address the kind of complexity that an A.I. system naturally must address (cf. 
Simmons et al. 2003, Laird 2002, Thórisson 1999), especially not those 
encountered in intelligent systems that must work in realtime in real settings. 
 

Constructionist Design Methodology 
The first prong in our attack on the pragmatics of creating large, integrated 
A.I. systems is the Constructionist Design Methodology (CDM17), a design 
methodology geared towards helping with the construction of large, complex 
systems. The methodology “glues together” the three first components by 
offering a formal structure for the system modularization process and enabling 
the execution of large A.I. systems in a distributed fashion. 
 
Constructionist Design Methodology (CDM) is an emerging set of principles 
for designing and implementing interactive intelligences and systems. It is a 
practically-driven approach that can help speed up implementation of 
relatively complex, multi-functional systems.  
 
Although the methodology is fairly general and can be applied to the building 
of various systems, including subsystems, we have a particular focus on 
developing relatively complete humanoids with realtime perception-action loop 
capabilities. Of special interest to us is human-robot communication, including 
speech, gesture, facial expressions, and gaze, in both the input and output. 
The embodiment of our robots can come in various levels of completeness, 
from just a face to a full body, and includes virtual robots that can perceive 
and act in virtual as well as real environments. CDM helps lower the 
complexity of building such systems. Here we give a short overview of the 
methodology; those interested in more detail are referred to Thórisson et al. 
(2004). 
 
When beginning the construction of a mind we start with the high-level goals 
of the system. This is done by writing scenarios with narratives that cover the 
various parts of the system. Then follows a period of modularization where 
division of labor is used to come up with functional modules and message 
types. The role of each module is determined in part by specifying the 
message types and content that needs to flow between the various functional 
parts of the system to support the system’s operational goals. The boundaries 
between modules are delineated by, in parallel, specifying their functionality 
along with messages defining the semantics of their inputs and outputs. 
Modularization through explicit messages means that system designers can 

                                                
17 Some earlier papers refer to the methodology as Constructionist A.I. Methodology (CAIM). 
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build out several parts of the system in parallel. Messages, and their content, 
is continuously refined as design progresses.  
 
A total of 9 steps are identified in CDM, most of which are iterative in nature, 
delineated in Thórisson et al. (2004). The principle of divisible modularity 
prescribes iterative revision of modules through repeated division of their 
functionality into a set of ever-smaller interacting modules. CDM provides 
several heuristics for how to best to modularize. There are primarily two 
modularization motivators: related to architecture and related to efficiency. 
Among the former are classifying modules into the functional roles (e.g. 
perception, decision, and action); among the latter is avoiding duplication of 
information in various parts of the system and following the natural breaks 
along low-bandwidth information flow.  
 
CDM proposes a breadth-first approach; every module starts out relatively 
simple, reading one type of message and posting another; the complete set of 
modules and their interaction is laid out very early in the design process. This 
way, a full end-to-end chain of the whole system can be built for a single 
interaction case. Every element in the path should be tested on paper, along 
with the routing mechanisms, timing assumptions, etc., very early in the 
design process, and continuously iterated over the course of development. 
 

OpenAIR 
The second prong in our framework is an information exchange and routing 
specification that provides a language-independent messaging format and 
network-independent routing protocol. The specification, called OpenAIR,18 is 
based on a publish-subscribe architecture that is simple enough to be 
implementable in any (object-oriented) programming language, yet it is 
powerful enough to scale to support complex A.I. systems.  
 
OpenAIR is intended to be a highly practical solution, allowing A.I. 
researchers to share code more effectively. In a nutshell, it is a definition or a 
blueprint of the "post office and mail delivery system" for distributed, multi-
module systems.  
 
OpenAIR is historically related to efforts such as KQML and Open Agent 
Architecture.19 Its implementation is based around standard TCP/IP and XML 
and consists of a simple but solid message semantics and network protocols, 
and provides a foundation within which other markup languages and 
semantics can be transported between processes and over networks. For 
example, a gesture recognition and generation system might represent 
analyzed time segments with their own gesture-specific XML; this content 
would then be exchanged between the modules in the system through an 
OpenAIR message envelope.  
 
OpenAIR has been in development for several years and has reached 

                                                
18 The full technical specification can be found at http://www.mindmakers.org/openair 
19 The initial OpenAIR specification was done by Communicative Machines and is now exclusively 
managed by the members of MINDMAKERS.ORG. 
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sufficient maturity to be used in courses and research projects at several 
universities in both Europe and the U.S. It promotes simple yet sufficient 
semantics to foster increased collaboration, communication and cooperation 
between software, systems, people, and institutions.  
 
In pub-sub systems a module or agent can register for a message type, and 
any time a message of that type is posted (by anyone in the system), the 
message will be delivered to the subscribed module.  
 

PSYCLONE 
The third component in our framework is a software platform that incorporates 
the OpenAIR specification and provides additional functionality related to 
setting up, monitoring and maintaining heterogeneous systems running on 
multiple computers. The platform, called Psyclone (CMLabs 2002), supports 
both streaming data and discrete message passing, implements a querying 
interface and runtime monitoring and management tools.  
 
Psyclone is best viewed as a system for handling the next level of 
architectural complexity above the object and the application; it sits at the 
same level as component-based frameworks such as Enterprise JavaBeans20 
(Sun Microsystems 2002), yet is fairly different in most respects, especially in 
that it is cross-language and has a powerful built-in load-balancing facility.  
 
In accordance with OpenAIR, Psyclone supports publish-subscribe data 
routing. In addition to discrete data transfer Psyclone provides streaming data 
transfer between modules. Through modularity principles inherited from the 
Constructionist Design Methodology (CDM) it simplifies the design of complex 
systems and their connection to input and output systems like vision, body 
tracking, graphics and more.  
 
Built around the concepts of modules and "whiteboards" (Thórisson et al. 
2005a), which are a version of blackboards, Psyclone takes full advantage of 
the benefits of a message-based, publish-subscribe system. Among the 
benefits of this system is that the messages embody an explicit representation 
of each module’s contextual behavior, and can carry with it their state. The 
whiteboards provide a (nicely centralized) recording of all system events and 
system flow.  
 
Supported programming languages, C++ and Java at present, have an 
OpenAIR “plug”, which provides simple API with full messaging and 
streaming21 capabilities.  
 
OpenAIR messages effectively implement APIs between the system's 
modules, specifying their message exchange through a common protocol.  
 
Psyclone is especially relevant for incremental building and debugging of 

                                                
20 http://java.sun.com/products/ejb/ 
21Streams are not part of the OpenAIR specification yet, but are scheduled to be proposed as an 
extension in the future. 
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interactive systems. Monitoring systems, such as Psyclone's web-based run-
time system inspection tool, can display the state of modules and the whole 
system. It allows the causal chains, embodied in the message flow, to be 
visualized and inspected directly. Monitoring tools work from any remote 
location, which can be very useful on systems where the deployment is on 
physically separated machines. 
 
Interactive systems typically have unpredictable input streaming and output 
generation. They can be modeled as being asynchronous, real-time and 
open-loop. Comparing Psyclone to CORBA22, which certainly shares some of 
its goals and features, Psyclone is created specifically for use in designing 
interactive A.I. systems, and thus has many built-in features for supporting the 
creation of such systems, e.g. temporal accountability, which means that time 
is kept track of in the system architecture. In contrast to CORBA, where an 
object makes a request for a service or for information, simulating an 
extended function call, Psyclone uses non-blocking message passing via 
whiteboards: Modules post data to a central server, and that data is delivered 
to subscribed modules. Additionally, modules in Psyclone can retrieve old 
messages from the blackboards, through a simple query language. At a high 
level, then, CORBA is “pull” whereas Psyclone is both "pull" and “push”. 
Psyclone also offers message time stamping and quality of service via 
prioritized scheduling, functionalities still missing in CORBA. 
 
When a Psyclone module receives a message type to which it has 
subscribed, it may in turn post zero or more messages. Modules can also post 
messages at any time, independent of other message flow. To simplify 
development in Psyclone, the full set of modules and their attributes can be 
specified in an XML file called a psySpec. Modules that run on machines 
other than the Psyclone server can also be configured via this file. 
 
At run-time, all data in the system travels in messages, via blackboards.23 A 
message is a convenient metadata wrapper around the message's content. 
The metadata includes the message’s type, a globally unique ID (GUID), the 
language that the content is represented in, name of sender, and time of 
posting, along with other timestamps. This metadata can be useful in making 
queries about the system’s past behavior. 
 
All messages in Psyclone have a type (most often assigned by the system 
designer and specified in the psySpec). For example, a face detector may 
post a piece of data of the type “Vision.Face”, containing partially processed 
or detailed facial data. There may be any number of different face detector 
modules, each of which posts that same data type, but with different content 
and emphasis. Message type names are represented as a tree with dot-
delimitation, e.g. Vision.Face.Human and Vision.Face.Dog. One-to-one 
messaging between any two modules is done using unique message types.  
 
In addition to standard ASCII messages, Psyclone provides powerful facilities 
for publishing and subscribing to binary data streams, using Psyclone’s 
whiteboards, which natively support streaming media. In Psyclone, all 
                                                
22 http://www.omg.org/cgi-bin/doc?formal/97-02-25 
23 An exception to this is the handling of streaming media, a topic beyond the scope of this paper. 
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modules and whiteboards have unique names; modules subscribe to 
message types from particular whiteboards as specified in the psySpec. They 
can also unregister and register dynamically for message types at run-time. 
Through dynamic subscriptions, interaction between modules can thus be "re-
wired" on the fly, with any module able to alter its "connection" to other 
modules by registering or unregistering for the type(s) of data they produce.  
 
It may be desirable to have the sensory I/O and cognition modules running in 
different languages and/or on different operating systems or hardware. Some 
components may only run on certain hardware architectures or configurations, 
as is often the case with open-source packages for e.g. speech recognition, 
speech synthesis, and computer graphics. Another reason to run components 
separately is that one may want particular components to take advantage of 
specialized hardware. Yet a third reason is cost: Since hardware is now 
cheaper than ever, access to multiple pieces of older yet perfectly usable 
hardware is becoming the norm.  
 
Psyclone free the developer from concerning themselves with sockets and 
other details of networking. Daemons facilitate starting and managing 
processes on remote machines: On startup, Psyclone tells the daemon 
running on each of the computers to start up all relevant executables on that 
machine, automatically sending over any configuration parameters for these 
executables specified in the psySpec. 
 
A strategy like CDM, that supports modular separation of functionalities during 
development and allows for rearranging the components and their interaction 
in a highly dynamic way, is, to our knowledge, the most powerful methodology 
currently available for creating broad, interactive A.I. systems.  
 

Two Example Systems 
We will now briefly describe how Psyclone was used with the Constructionist 
Design Methodology to produce fairly complex systems. The first system is an 
augmented-reality room inhabited by an embodied virtual agent, Mirage. The 
second is a large simulation of a market.  
 
The system was developed by Thórisson and students at Columbia University 
(Thórisson et al. 2004) to enable interaction with a virtual agent in an 
augmented reality room: The user puts on a pair of optical see-through 
glasses24 that reveal the location of the Mirage humanoid agent in three-
space. Wearing the glasses the user sees the real world, but superimposed 
on it is a stereoscopic, ghost-like apparition of Mirage, whose behavior is 
generated by the system in real-time.  
 
The mind of Mirage consists of eight main components: Two perception 
modules, an action/animation scheduling module, a speech recognition 
module25, a speech synthesis module26, a decision module and a news 

                                                
24Sony LDI-D100B 
25 Sphinx speech recognition system. http://www.speech.cs.cmu.edu/sphinx/ 
26 FreeTTS speech synthesis system. http://freetts.sourceforge.net/docs/index.php 
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summary module (McKeown 2002); a detailed 3-D model of the entire room, 
including tables, chairs, etc., gives Mirage a certain amount of knowledge 
about his surrounding. Mirage also has access to a database providing 
propositional information about the name, type, use, and other attributes of 
individual objects. All of these are implemented as separate modules 
(executables) communicating through Psyclone.  
 
To make the agent interactive and conversational a multimodal input system 
was implemented that uses speech recognition and motion tracking of the 
user’s right hand. The agent itself is capable of multimodal communication 
with the user via a speech synthesizer, body language, and manual gesture. 
Users can point at any object in the room and ask Mirage what that object is. 
When asked about the news, Mirage will recite up-to-date news summaries. 
The agent is also aware of his own proximity and orientation to the user; when 
either his name is spoken or the user comes within communicative distance, 
Mirage will turn to greet. 
 
The total development time for Mirage was only an estimated 2 mind-months 
("man"-months), over a period of 9 weeks – well under anyone's prior 
expectations. This result is comparable or better than that of others using 
blackboard-like architectures, e.g. Maxwell et al. (2001), who constructed a 
highly sophisticated robotic system with 10 full-time students, over a period of 
8 weeks. Further details about this system can be found in Thórisson et al. 
(2004).  

A second system built using the methodology and Psyclone is a simulation 
model of knowledge evolution in a market economy. Innovation is a central 
element of economic development and knowledge is the force behind it. 
Understanding knowledge – its organization and especially its dynamics in a 
market – becomes therefore the main challenge when explaining economic 
development in general, and the competitiveness and growth of firms and 
industries in particular. The simulation system developed includes a fine-
grain, dynamic, morphogenic model of knowledge that is easy to manage, 
interpret and extend. The knowledge model is embedded a larger market 
simulation where selected elements of an economy, including employees, 
companies, banks and consumers, are modeled at multiple levels of 
abstraction, from agents to monolithic entities, comprising 5 distinct module 
types. On any run several instances of each type are run, for up to 80 
modules in a single run. The results show the model’s excellent potential to 
address questions about emergent phenomena related to knowledge 
evolution, knowledge transfer and knowledge use in market innovation. The 
system was built by 10 Master’s-level students over a period of 5 weeks. The 
results support prior conclusions that CDM is a powerful high-level design 
approach for developing systems with a large number of modules with 
complex interactions. 

 

MINDMAKERS.ORG 
The fourth prong is an open platform for code exchange, documentation, 
discussion and storage. It is really a project-exchange, but thinking about it at 
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the code level makes its primary focus more obvious: To facilitate increased 
testing and use of A.I. code written by others. MINDMAKERS.ORG is the 
website we have set up for this purpose. This research forum is done 
incollaboration with a number of other researchers. We invite anyone with 
interest to join in the MINDMAKERS effort.  
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