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Cognitive Map
Architecture

Facilitation of Human–Robot Interaction in Humanoid Robots

A
mong the challenges of
building robots for every-
day environments is the
need to integrate di-
verse systems and

subsystems. Here, we describe a
step in this direction: the Cogni-
tive Map robot architecture. It
supports a flexible multicompo-
nent system that can be dynami-
cally reconfigured to handle
different applications with mini-
mal changes to the system. Run-
time activation of traditional and
hybrid robot architecture para-
digms for any particular task is sup-
ported. Our method of isolating the
communication interface within a
single application programming inter-
face (API) layer supports loose coupling
between components, allowing easy
integration of legacy code and expansion of
existing systems. We classify the components
into four main roles: perception, knowledge/state
representation, decision-making, and expression. Inter-
action, Task Matrix and Multimodal Communication are mod-
ules built in this system for facilitating human–robot interaction
with the humanoid robot ASIMO built by Honda Motor Co.,
Ltd. We describe the key ideas behind the architecture and illus-
trate how they are implemented in a memory card game applica-

tion where people interact with
ASIMO. Through our experience
and comparison with alternative
approaches, we show that the
Cognitive Map architecture sig-
nificantly facilitates implementa-
tion of human–robot interactive
scenarios.

The goal of developing flex-
ible, versatile humanoid robots
capable of coexistence with
humans is a challenge, which
nonetheless drives many roboti-
cists to work with what typically
is a highly temperamental com-

bination of hardware and soft-
ware. In addition to the many

shared problems that the humanoid
robots have with their nonhumanoid

brethren, there are many challenges
unique to humanoid robots. Chief

among these is that they are intended for
general task execution in everyday environ-

ments. Such robots must have a high number of
degrees of freedom for flexible manipulation and navi-

gation, a variety of sensors to gather information about their envi-
ronments, and the ability to interact with people using natural
modes of communication. These are important requirements that
strongly dictate the design of the robot architecture.

How can we design an online reconfigurable software
architecture capable of reusing components in different appli-
cations or interaction scenarios? One approach is to isolateDigital Object Identifier 10.1109/MRA.2008.931634
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application-specific details from reusable functionality, elimi-
nating the need to rewrite entire parts of the system each time
a new application is targeted. We have followed this methodol-
ogy in building several applications, including an interactive
memory card game [1] and a multimodal push planner for
moving blocks around a table [2] (Figure 1).

Human–robot interaction research features the humanoid
robot as an embodied intelligent agent that uses natural forms
of Multimodal Communication with humans, such as deliver-
ing and understanding speech and gestures. This requires the
need for parallel processing and time synchronization capabil-
ities for analyzing and synthesizing multiple data streams. In
addition to people, many tasks also require interaction with
passive and active objects in a potentially unknown environ-
ment. The goal is not just to build a geometric representation
of the environment for collision-free navigation, but also to detect,
identify, and reconstruct objects for potential manipulation and rea-
soning with the environment. These problems require efficient
designs to handle and share information throughout the system, as
it flows from the sensors into various knowledge representation
schemes to be acted upon by decision-making systems responsible
for task-related motions on the robot.

Most of the technical requirements described earlier are still
active research problems. Humanoid robots require an impres-
sive integration of many disparate technologies that ultimately
require them to work smoothly together to accomplish a task.
No single research laboratory exists that can claim to be a
master of all these research areas. Therefore, to pursue a closed,
proprietary strategy for system development in this area would
be both time-consuming and self-defeating. Yet researchers
often invest considerable time and effort developing their own
software prototypes, frameworks, and test-beds, including
supplementary code libraries. They are comfortable and most
efficient working in their favorite development environment
(operating system, compilers, and build systems). The choice
of environment can be driven by practical constraints such as
driver availability for specific hardware or needing to use
declarative languages versus procedural ones.

Many humanoid robots are comprised of several computers
with different operating systems. Motor control is typically
handled with a real-time embedded operating system. Camera
sensors are driven with software on Linux or Windows operating
systems. With current technology, it is difficult to build a single
monolithic system with all tasks running on a single computer.
Better load-balancing is achieved with distributed systems.

We think that any effort to attempt a standardization of robot
components at all levels is misguided. In many areas, no consensus
has yet emerged on best practices for solving problems such as
localization, motion planning, or object classification. Any attempt
to suggest researchers to rewrite their own software to a uniform
standard will most likely be met with resistance due to the amount
of time required to rewrite software perfectly adequate for their
own current needs or that a considerable amount of time and
money has already been invested in its development. Many people
working on architectures for robots realize the importance of
designing standardized robot components but have different con-
victions on what the form of that standard should be.

Acceptance of this fundamental situation played an important
influence in the design and strategy of both the informational
flow and structure of our robot architecture and the software
engineering choices we made. To this end, we have developed
the Cognitive Map robot architecture that minimizes the amount
of rewriting of existing legacy software for integration. The
Cognitive Map can be thought of as a centralized information
space for connected components to contribute both internal and
environmental state information. We leverage several successfully
proven concepts such as blackboard architectures [3] and publish-
subscribe based messaging [4] to develop a flexible robot architec-
ture that exhibits fault-tolerance, easily substituted components,
and provides support for different structural paradigms such as
subsumption, sense-plan-act and three-tier architectures [5]. Our
multicomponent distributed system has system components that
are loosely coupled via message-passing and/or continuous data
streams. This architecture was implemented on the humanoid
robot ASIMO [6] manufactured by Honda Motor Co., Ltd.

We review various forms of communication middleware
and component models in the next section. The ‘‘Architec-
ture’’ section provides an overview of our architecture and con-
siderations in its design. The ‘‘Scenario Design’’ section details
the process from conceptualizing an interactive application to
its instantiation in the robot architecture. The ‘‘Components’’
section singles out several important high-level components
that play a significant role in many of our interactive scenarios.
Finally, discussions and conclusions are presented.

Previous Work
Over the evolution of robot architectural design, one important
structural theme has persisted: component models and their
interconnectivity through distributed systems. Component mod-
els provide a software construct for encapsulation of elements of a
robot’s functionality or behavior and are represented with strictly
defined interfaces where communication between components is
done exclusively through message passing. As long as the interface
is adhered to, the actual implementation details and environment
can be opaque to the other components. Because of the sheer
amount of parallel, collective computation required, components
often exist on different processing, and storage elements. Many
different robot architectures have been designed based on this
basic idea but differ in the design of the component model. The
design of the components’ interface influences patterns of mes-
sage interchange, representations of information, and the granu-
larity of the components.

(a) (b)

Figure 1. Applications built with the Cognitive Map:
(a) memory game and (b) multimodal push planner.
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Component Model Frameworks
Player 2.0 [7] is the latest revision of a popular robotics devel-
opment platform that provides standardized abstraction inter-
faces for robot sensors and actuators. The original Player [8]
provided a single server for multiple clients of a robot’s devices,
whereas Player 2.0 allows multiple servers. However, servers
are not allowed to have cyclic dependencies for information.
In contrast, our architecture treats components as semi-
independent agents, which can exchange information with
each other via one or more blackboards.

Open architecture humanoid robotics platform (OpenHRP)
[9] follows the common object request broker architecture
(CORBA) model for interprocess communication between
components. The structure of CORBA’s interface definition
language (IDL) provides an abstraction for programming
language independence and distributed system communication.
However, since the IDL promotes a remote procedure call proto-
col, the information and execution flow is restricted to client–
server interactions. This makes component activity dependent on
external components calling its functions, which in turn makes it
difficult to design architectures with concurrent independent
behaviors. Furthermore, the coupling between components is
stronger than it needs to be as it is necessary for one component
to know the available functions of another component to interact
with it. In contrast, our Cognitive Map architecture follows a
publish-subscribe protocol that allows looser coupling between
components. OpenHRP also identifies several important compo-
nents for humanoid robots, focusing more on motion generation:
collision checking, dynamic simulation, motion planning, and
controllers. The Cognitive Map has similar components, but
many more are added for perception and decision-making, espe-
cially for targeting human–robot interaction.

The Microsoft Robotics Studio [10] treats components as
services that can communicate asynchronously and run concur-
rently using the concurrency and coordination runtime (CCR)
asynchronous programming library and decentralized software
services (DSS) application model. Components must organize
their state information and dependencies with other components
using standardized elements such as service handlers for each type
of incoming messages, partners for components it works with
and service state for accessible component information. The
advantages of this standardization of component parts are that
components can have an easier time self-discovering the capabil-
ities of other components. However, the burden is placed on
developers to conform their existing legacy code into the struc-
ture dictated to by the component model. Furthermore, since
Microsoft Robotics Studio is built upon managed runtime code
libraries dependent on the Windows operating system, the flexi-
bility of running components with other operating systems like
Linux is limited. In contrast, the Cognitive Map uses an XML-
based communication protocol and allows components to be
implemented on a variety of programming languages (C, C++,
Java, C#) and operating systems (Windows, Linux, MacOSX).

The brain bytes component model (BBCM) and brain
bytes data model (BBDM) [11] were designed to encapsulate
processing and data roles respectively for intelligent systems.
During system design, the integrated system architecture is

conceived first, followed by populating the design with mod-
ules that meet the functional requirements of the architecture.
As BBCM components can be very simple in function, there
can be hundreds of components in the system. Any existing
software should be reimplemented to follow the component
interface and functional constraints dictated by the system
design. In contrast, our systems are built from storyboards that
visualize the desired behavior of our robots in interactive sce-
narios. Key low-level component technologies are identified
and created by modifying legacy code whenever possible.
Several high-level components are then designed or reused
that coordinate and collect the information produced by these
lower-level components to produce new information. Conse-
quently, our systems exhibit a smaller number of components
with more encapsulated behavior in each component, simpli-
fying the abstract view of the overall system design.

Universal real-time behavior interface (URBI) [12] allows a
robot to be represented as an URBI engine that can process exe-
cution scripts residing locally or sent to it via TCP/IP from
remote clients. The components follow an object-oriented
abstraction interface called UObjects, which nicely expose their
functionality with object-oriented programming syntax features
in the scripting languages of the engine. The URBI engine
allows concurrent, event-driven execution of behaviors. Exist-
ing code must be converted into a UObject template. One key
conceptual difference for the Cognitive Map is that it requires
minimal changes to the legacy code. Rather than restructure
existing legacy code to fit the component interface, the compo-
nent interface for the Cognitive Map is accessed with a single
API, whose routines are called within the legacy code.

Traditional Robot Architectures

Three dominant robot architectural paradigms are currently
being used extensively. The sense-plan-act paradigm intro-
duced in the Shakey robot [13] features three distinct stages of
operation. This strict decomposition is not very suitable for
dynamic environments. In response to this, the subsumption
architecture [14] proposes building robot architectures from a
collection of interconnected low-level behaviors, where sen-
sor outputs are directly connected to actuators. Higher-level
behaviors could then override or subsume the lower level
behaviors. However, it is difficult to specify long-term behav-
iors or optimize plans consisting of multiple tasks with this

Human–robot interaction research

features the humanoid robot as an

embodied intelligent agent that uses

natural forms of Multimodal

Communication with humans, such

as delivering and understanding

speech and gestures.
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kind of architecture. Layered architectures like 3T [15] attempt
to combine the low-level behavior layers with high-level plan-
ning layers by introducing an intermediate executive layer for
sequencing tasks. Some software frameworks for robots, like
CARMEN’s support of 3T [16], directly adopt a specific
architectural paradigm to follow.

We have found that a single architectural design does not effi-
ciently implement all tasks equally well. The S* approach to
behavior-based control argues that access to high-level task-
based knowledge for perception components is important espe-
cially for implementing attention mechanisms [17]. Although
this approach could not be directly supported in idealized imple-
mentations of the architectural paradigms described earlier, the
ability of components in the Cognitive Map to subscribe and
publish to any other component in the system permits S* and
other alternative controller arrangements to be implemented.
Our communication subsystem is designed to allow dynamic
reconfiguration of our components so that any one of these para-
digms can be activated for a particular task to be done. This
approach derives partly from the Ymir agent architecture for
multimodal dialog and interaction [18], which proposed groups
of preceptors, deciders, and actions/planning components oper-
ating and interacting in parallel, as well as transversal priority
layers that cut across perception, decision, planning, and action.
Like in Ymir, Cognitive Map components can potentially accept
messages from any other component, removing the need to par-
tition components into canonical software layers.

Architecture
To manage shared information, the Cognitive Map architecture
is built on the Psyclone Whiteboard system [19], which combines
the shared information concepts of a blackboard architecture [3]
with data streams that can be shared, have their data samples time-
stamped for synchronization, and data content transformed (e.g.
coordinate conversion) or selectively screened while being

transmitted between components. One or more blackboards can
be located on the centralized server. In our architecture, we use
two blackboards, CognitiveMapWB and TaskWB, for handling
environment state and transient command messages, respectively
(Figure 2). Different blackboards can also be assigned to each level
in a layered architecture to explicitly partition shared information
based on its functional level of operation.

Messages can be sent individually or placed in continuous
data streams, which feature fixed semantics and less processing
overhead per message. Components can publish and subscribe
to messages and streams on the blackboards. An important
point is that publishers and subscribers do not have to know
about each other, making this form of coupling looser than
CORBA-based or DSS-based (see the ‘‘Previous Work’’ sec-
tion) component models. The advantage of this loose coupling
is that components can be restarted (or even substituted with
other components sharing the same interface) without affect-
ing the rest of the system. Our architecture follows the con-
structionist design methodology (CDM) [20]. CDM was
developed to help in the creation of systems capable of a large
number of functionalities that must be carefully coordinated to
achieve coherent system behavior. CDM is based on iterative
system construction where components are incrementally
added to a network of named interacting modules.

To minimize the effort of integrating existing legacy code
when converting them to components, we developed a single
library called the CogMapApi that manages message and
stream communication within the Cognitive Map. To handle
incoming and outgoing message traffic, a component typically
calls one or both of two functions, UpdateFromCogmap and
UpdateToCogmap, that are inserted into the beginning and
end of the original main processing loop of the component,
respectively (Figure 3). If a component exclusively publishes
or subscribes to messages, only one of these is necessary. In our
experience, a component can be integrated into our system

<<expression>>
TextToSpeech

<<decision-making>>
MultiModal Communication

<<decision-making>>
MemoryGame Rules and Behavior

Cognitive Map Server

<<expression>>
Task Matrix

<<knowledge/state>>
EnvironmentMap

<<expression>>
Robot Motion Server

<<perception>>
Camera Server

<<catalog>>
CognitiveMap

<<blackboard>>
TaskWB

<<blackboard>>
CognitiveMapWB

Motion Communication Link
to Actuator Servos

Sensor
Communication
Link to Cameras

<<perception>>
CardDetector

<<perception>>
SpeechRecognition

<<perception>>
TableDetector

<<perception>>
NaturalLanguageProcessor

Figure 2. Overview of the Cognitive Map robot architecture: Representative components depicted showing connectivity to the
central Cognitive Map server. Component types are labeled based on name. Arrow directions depict dependencies on various
interfaces (not message directions).
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within a few days. This is possible because the adopted strategy
leaves the majority of existing legacy code unchanged by iso-
lating Cognitive Map-related communication to CogMapApi
calls in the two functions described earlier.

The Cognitive Map does not directly support real-time com-
munication (with guaranteed response times to events), although
it does support time-aware communication. Our architecture
uses specialized communication libraries in situations where
more direct peer-to-peer communication is required and were it
is not necessary to store information in a centrally accessible
blackboard. Typically this includes communications for sensors
and actuators, such as streaming camera video directly to compo-
nents or providing a low-level motion interface for sending joint
angle trajectories to the robot. In the case of streaming video
from cameras, components handling different vision tasks can
subscribe to the same video stream from a camera server on-
board the robot. They can then reside on dedicated computers
for faster distributed computation while reporting their com-
puted results back to the Cognitive Map blackboard. In cases
where hard real-time is needed, components are implemented
together on a real-time operating system with a dedicated com-
munication link to the rest of the Cognitive Map.

Messages

The Cognitive Map features a centralized server to handle
high-level message dispatching and registration of connected
components. Components can either reside externally from
the Cognitive Map, using TCP/IP socket-based communica-
tion, or be dynamically loaded internal components, commu-
nicating directly through memory. Following the OpenAIR
specification [19], messages have a type that provides the selec-
tion criteria for subscribing. In order for components to be
aware of the available messages in the system, an ontology of all
the messages needs to be maintained. Messages types are hier-
archical with each level delimited by a period (.). For example,
for table events, we have percept.vision.physobject.
table.appear and percept.vision.physobject.
table.touch events.

The contents of the message can consist of various primitive
and aggregate data types (real, string, integers, tables), but can
also consist of objects with attributes. In particular, the infor-
mation about both tangible and intangible objects is encapsu-
lated in a CMObject data object (Figure 4). CMObjects can
represent physical objects identified from sensory input or
conceptual objects generated by the algorithms of a component
(e.g., observed actions). Physical objects can have 3-D pose and
geometric information and they can be symbolically labeled
with an object type if it can be identified. Objects of a specific
type can also have custom fields associated with them. For
example, a table object has its length and width parameters for
the tabletop to allow reconstruction of its geometry from a rela-
tively small set of parameters. Messages can correspond to pure
information about the sensed world (e.g., object poses), com-
mands to specific components (e.g., task execution commands)
or event notifications (e.g., person touching a table).

In addition to its basic dispatching role, the Cognitive Map pro-
vides three mechanisms for processing messages: indexers, deciders,

and detectors. Indexers provide different ways to access stored data
coming into the Cognitive Map via streams. By default, samples
on a stream are accessed by timestamps and frame count. Indexers
can provide other search criteria for accessing an object with high-
performance indexing, such as organizing objects based on their
coordinate positions. Detectors are instantiated dynamically by the
Cognitive Map upon requests from other system components, to
set up tests for world conditions and events based on data from one
or more Indexers. Typically, the creation of a detector automati-
cally initiates the creation of an indexer.

A detector implements a Boolean function that can produce
answers to specific questions about the data in a stream. One
indexer is created to facilitate this process upon the creation of
a detector. The criteria for a detector can originate from a
component and be dynamically specified at runtime. In our
system, detectors can be specified using preset Boolean opera-
tors written in C or be entirely scripted and interpreted at run-
time using the Lua language [21]. All samples coming through
a stream monitored by the detector are evaluated and allowed
to pass if the Boolean expression has a true value. This mecha-
nism can be used to reduce message traffic. For example, a
component responsible for manipulating objects on a table can
use detectors to report new objects exclusively within the
bounds of the table top. Deciders subscribe to information
from one or more detectors, or other deciders, and make deci-
sions on how to respond to events. They can then report their
decisions back to the Cognitive Map. In the ‘‘Interaction’’ sec-
tion, we describe how these three mechanisms can be used for
a specific application like the memory game.

Scenario Design
The architecture describes the components and communica-
tion middleware between these components. However, the

view2

Victor-Mug-
001.png

Victor-Mug-
002.png

view1training

(0,0,0,1)orientation

(3.5,3.2,7.0)pos

cup

Victor-Mugid

type

Figure 4. Sample table representation of the message
contents stored in the CMObject corresponding to a cup
object with multiple viewpoint images.

void MyComponent::MainLoop() // Where all the work
            // gets done
{
UpdateFromCogmap();// Poll messages/streams from
       // Cognitive Map
DoProcessing();// Examples: feature detection,
         // decision-making, planning, etc.
UpdateToCogmap();// Publish information to Cognitive Map

}

Figure 3. Main loop of component for processing incoming
(UpdateFromCogmap) and outgoing (UpdateToCogmap)
messages from the Cognitive Map.
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physical instantiation of the architecture—the specific compo-
nents and message passing behavior during robot execution
depends on the nature of the active robot application. As a
robot switches application modes, the Cognitive Map reconfig-
ures itself by changing the set of components it interacts with.
In the following sections, we will ground the discussion of our
architecture by reference to an interactive memory card game
that was developed between ASIMO and a human player [1].

Memory Game
The Memory Game (Figure 5) features a deck of matching pairs of
cards that are shuffled and placed face down on a table. Players take
alternate turns picking two cards in an attempt to find and collect
matching pairs. A player who successfully finds a match keeps the
cards and is entitled to another turn. If the player does not find a
match, the other player starts his or her turn. When one player
achieves a majority of the cards or both players tie, the game is over.

Design
Our design process begins with the construction of a branching
storyboard (Figure 6) that depicts the desired observed behavior
of both the robot and humans involved in the scenario. Every
attempt is made to predict different conditional behaviors and
responses to those situations. For example, the storyboard
shows how the robot would behave if it won, what happens if it
failed to see a detected card or how to respond if the human

player asks for help. This process allows us to identify what
technical components are required and what information they
should publish or subscribe to for accomplishing their role
within the system.

Relating to the Cognitive Map, the storyboard aids both in
the design of individual components and their message interfa-
ces between each other. For example, if dialog is present in the
storyboard, this implies the need for both speech recognition
and speech synthesis components. The storyboard in Figure 6
further suggests that a simple input text message interface to
the speech synthesis component would suffice for the dialog
requirements of the scenario, preventing the implementation
of unnecessary features or an overly complex interface to the
component. The types of gestures that we wish the robot to
perform also have important implications for motor control
and sensing. Pointing gestures require both awareness of object
position in the environment and an end-effector based control
scheme for positioning and orienting the robot’s hand.

In the design of interaction components, which will be further
described in the ‘‘Interaction’’ section, the storyboard identifies all
individual states that can occur during the scenario as well as the
events that can trigger transitions between these states. This sug-
gests what would be the most appropriate decision-making
scheme to adopt within the interaction component. In the mem-
ory game, a finite state machine could be used to keep track of
the current contextual game state and expected transition events

“The Braque” (card name)
“This memory game has started.”

Card and Event Recognition
(No External Cameras)

– “Yes please!”

Simple Conversations

(a) (b)

Pointing at Objects

It’s located either here...

...or here

Touch Event Detection
(No External Cameras)

“Are you sure about picking
up that card?”

(c) (d)

“Do you need help?”

– “No.”

Figure 5. The memory game application features integration of many components to create a human–robot interactive
experience: (a) activity detection (recognition of flipped cards), (b) Multimodal Communication with speech and gestures,
(c) proactive behavior (warning about touched cards) and (d) spatial tasks using information in the environment map
(pointing at cards). Yellow and white text denotes dialog spoken by ASIMO and the human player, respectively.
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that are likely to occur from each state. The transition events
between states in the storyboard identify what types of messages
need to be generated by the components of our Cognitive Map
architecture. In Figure 6, a transition occurs when a player picks a
card, implying that a perception module for detecting cards
would need to detect physical card motion or flipping and publish
these message events to the Cognitive Map. If the storyboard
described a simpler application that does not need to keep track
of history, a basic action-selection table could be implemented as
the interaction component instead.

Components
Components in our Cognitive Map architecture tend to feature
a combination of four broad roles: perception, knowledge/state
representation, decision-making, and expression (see Figure 2
for examples). Perception components include low-level sen-
sor outputs and various feature extractors that extract higher-
level information from the sensor data. For example, a compo-
nent that performs face detection and tracking, or that returns
object identification, would be in this category. Knowledge/
state representation components use features to assemble
higher-level information such as internal or external environ-
mental state information. This information can also be
transient, such as a list of active tasks the robot is performing, or
it may be long-term information, such as a database of recognized
objects encountered during the robot’s operational lifetime. The
Cognitive Map supports generic database objects called catalogs
(Figure 2) for accessing persistent information. The decision-

making components make use of the stored information or events
from the perception components to decide what actions to per-
form in the form of new motor and nonmotor tasks. Finally,
expression components result in physical observed behavior from
the robot, including motor task execution and speech utterances.
Components can have fairly specialized behaviors such as text-to-
speech conversion or an object detector. However, in our experi-
ence, we have identified several high-level components that have
general use across several applications. We describe these in the
following subsections.

Interaction
For interactive applications, the scheduling of tasks must be
dependent on events in the robot’s environment. It must be
assumed that any task can be interrupted by sudden changes in
human behavior, such as a new verbal request, while the robot
is in the middle of executing a task. Humanoid robots must
have the capability of switching between different interactive
tasks. This means that the sequencing of tasks for a specific

Player arrives

P: “No, you
go first”P: “Yes”Two or More

Hands Raised

One Hand
Raised

P: “Pick Me”

A: “Ok, you on
the left come

play”

Wait for player
to come to

table

Asimo Points at
Card with Hand

Asimo Points at
Card with Hand-
Mounted Laser

Pointer 
 

1

4

A: “Ok, go ahead”

Player reaches for card

Player picks first card

A: “Do you want
to go first?”

A: “Ok, my turn.”

Figure 6. Portion of the storyboard used to design the memory game. The circled 1 and 4 are references to different scenarios
not shown here.

Debugging distributed systems is

challenging because of the difficulty

in isolating the source of observed

incorrect robot behavior.
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interactive application must be modularized to allow inter-
change of robot behavior.

The Cognitive Map allows interaction components to be
created to orchestrate different forms of interaction from turn-
based games, query-response interchanges, to script-based sce-
narios with conditional branching based on how a human
responds. The interaction component is a decision-making
component and is usually the main coordinating component
that orchestrates behavior in response to events under different
contextual situations. To aid in the decision process, this kind of
component subscribes to inputs from perception components
and sends queries to the knowledge and state representation
components. Once an action has been decided, the interaction
component sends appropriate command messages to the expres-
sion components.

Consequently interaction components often play the role as
deciders, as described in the ‘‘Messages’’ section. In the memory
game, the interaction component subscribes to different detec-
tors such as the table for recognizing the necessary conditions to
start a game or a card detector for notification of card appear-
ance, removal, and flipping events. If we place other noncard
objects on the table, we can use the detector mechanism to filter
out these objects so that the detector stream will only report
card-related object events. If the player chooses to discard cards
in a specific region of the table, an indexer can be created that
organizes the cards by coordinate positions so that a detector can
be established that filters out card events occurring in the discard
region of the table. These mechanisms allow the interaction
component to contain simpler logic by eliminating the need for
extensive special-case handling of nonrelevant events.

The structure and implementation of the interaction
component depends on the nature of interaction required by
the application. For the memory game, we initially used a single
finite state machine (FSM) to represent the entire game state
(Figure 7), modeling both the player and the robot’s state as well
as several special-case scenarios, such as the player asking for help
or ASIMO warning the player they are about to pick a bad card.
We found that as we increased the complexity of the interaction,
the number of states and transitions in our FSMs increased dra-
matically and had negative implications for scalability.

We were able to refactor the interaction component to
keep multiple state machines for different entities in the game
(Figure 7), featuring one state machine for the state of cards on
the table and one for the rules of the game. This approach sim-
plified the structure of the game, and increased robustness by
allowing the card table state machine to focus on valid card

layouts while the game rules state machine separately moni-
tored whether it was currently the robot or the player’s turn.

Environment Map
The environment map is a knowledge/state representation
component (Figure 2) that collects pose information from
objects in the scene, such as the table and its cards. It unifies the
different position information for all objects in the scene into a
common reference frame, allowing important spatial operations
to be performed such as deictic gestures and collision avoidance.

Task Matrix
The Task Matrix (Figure 2) is an expression component that
serves to map high-level symbolic commands to the low-level
motor commands that physically realize the task. It consists of
a collection of parametrized tasks ranging in complexity from
simple following of joint angle trajectories to manipulation
tasks complete with motion planning to find collision-free
paths in the workspace. The Task Matrix separates out reusable
task programs from the application specific interaction compo-
nents. The ability to specify parameters for a task allow the
task’s generic definition to be applicable to a particular envi-
ronmental situation. For example, the generic pointing task
can be made to point at different objects in the scene by speci-
fying the target object as a parameter. The Task Matrix queries
the environment map to resolve symbolic parameters like a
card’s name into its 3-D pose in the environment.

Task programs within the Task Matrix are implemented as
dynamically loaded plug-ins that are loaded on demand as a task
execution request is made. Rather than enforcing a single con-
trol paradigm for all tasks, the Task Matrix allows tailored con-
trollers for different tasks, which is important for humanoid
robots. For example, a walking task can use a more simplified
2-D planar planner for simple navigation whereas a complex
pushing task required 3-D obstacle information so that the
upper body can avoid self-collision or colliding with a table.

Simplified resource conflict resolution is provided by mak-
ing sure the Task Matrix’s different tasks do not compete for
the same kinematic chains. Other runtime checking for tasks
can be done such as verifying that an object to be manipulated
is present in the stored environment map of the robot. To avoid
code duplication, common libraries for motion control such as
motion planners or inverse kinematic routines can be shared
between all tasks. In the memory game, the Task Matrix is used
to store a library of gestures, both representing free motions
and spatial tasks that respond to changes in the environment.

Multimodal Communication
Specific to humanoid robots is the need for natural, multimo-
dal forms of interaction. Humans typically combine different
modalities for effective communication. For example, we
commonly gesture with our hands while engaging in conver-
sation. The Multimodal Communication (MMC) component
coordinates speech and gesture expression. Interaction com-
ponents send parameterized utterance types to the MMC
component, which internally converts these requests to
spoken text and/or gesture messages that are forwarded to

Messages can be sent individually

or placed in continuous data

streams, which feature fixed

semantics and less processing

overhead per message.
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text-to-speech and the Task Matrix components respectively.
The choice of wording is influenced by a combination of style

directives from the interaction component and internal state
information in the knowledge representation components.

Waiting
for

ASIMO’s
1st Card

Waiting
for

Player’s
1st Card

Waiting
for

ASIMO
2nd Card 

Waiting
for

Player’s
2nd Card 

Waiting
Removal
of ASIMO

Cards 

Waiting
Flip Back
ASIMO’s
Cards  

ASIMO
Offers to
Concede
Game  

ASIMO
chooses
2nd Card

Player
Chooses
2nd Card

Waiting
Removal
Player’s
Cards

Waiting
Flip Back
Player’s
Cards

Asimo
Asks

Player to
Concede

Awaiting
Player’s

Responsequit_accepted/offerPlayAgain quit_accepted/offerPlayAgain

match/
handleASIMOmatch

quit_declined/
startNewTurn

quit_declined/
startNewTurn

cardsremoved,canquit/
offerQuit

cardsremoved,canquit/
offerQuit

cardsflipped/
startPlayerTurn

cardsflipped/
startASIMOTurn

no match/
handleASIMOnomatch

match/
handlePlayerMatch

(a)

(b)

Game Strategy/State
(Simplified)

Start
No

Table 

Table
Ready

Waiting
for

Table 

ASIMO’s
Turn

Player’s
Turn

Tableau

TableAppear/
handleTableAppear

Cognitive Map
Card-Related
Events

Table Appear
Event

Waiting
for Deal

Waiting
for Player
Response

Waiting
to Clear
Table

CardsFlippedBack/
StartPlayerTurn

CardsFlippedBack/
StartASIMOTurn

TableEmpty/
StartDeal

DealtCard/
HandleDealtCard

PlayedCard/
HandleTurn

TableEmpty/
OfferPlayAgain

TableEmpty/
OfferPlayAgain

Accepted/RestartGame/
Reconciles Events
with Current
Historical Context

Conditions
Based on
Tableau
State

picked/handleASIMOCard1

picked/handleASIMOCard2

picked/handleplayercard1

picked/handleplayercard2

Figure 7. Evolution of the interaction component’s finite state machines. Transitions denote condition/action pairs. (a) Original
finite state machine. (b) Refactored finite state machine.

IEEE Robotics & Automation MagazineMARCH 2009 63



The MMC is a decision-making component that accepts utter-
ance-type messages from the interactive components, specifying
the content of the message to be spoken. For instance, the directive
Indicate(<objects=card10>,<style=urgent>),
is processed by the multimodal module to generate the spoken
words, ‘‘I choose this card,’’ and the concurrent deictic gesture
of pointing at the physical card on the table. Intonation
changes can be placed on the word ‘‘this.’’ The developer
responsible for the interactive module does not need to worry
about the mechanism for recovering spatial position of the
card nor the choice of words spoken.

Multimodal Communication can be used to remove
characteristic repetitive behaviors from the scenario: By forc-
ing the developers of the interaction module to think only
about the content of the communication and deferring the
style to the MMC, the robot can behave in slightly different
ways under the same game state conditions, greatly increasing
the flexibility of the system. Since the interactive module does
have knowledge of contextual state information, the style
parameter can be used to offer hints to the Multimodal Com-
munication on how to express the message. For example, if
<style=urgent>, the robot can choose to modify the
text-to-speech parameters to adjust the speed of spoken text.
Localization and culture-specific interaction issues can also be
handled by the MMC. Since the multimodal module can sub-
scribe to messages that indicate information about the player
(name, age, gender, nationality), this information can be used
to select appropriate gestures such as bowing to the Japanese
and holding out a handshake to North Americans and Euro-
peans. Personalization in spoken words can also be handled,
such as ‘‘John, do you need help?’’ and different phrasing can
be chosen for requests directed at children versus adults.

In contrast to the application-specific interaction compo-
nent, the multimodal component provides generic response
mechanisms that can be reused across unrelated scenarios. For
example, it provides the generic response mechanism
Indicate. This mechanism can handle different kinds of
objects the robot can expect to encounter (cards, fruits, house-
hold objects) and their location in the environment, number
of entities (singular, multiple) and semantics of indication
(refer to each entity or collectively to all of them). Such a
mechanism naturally leads to a parsimonious framework with-
out sacrificing the robot’s expressiveness.

Discussion
The design of the Cognitive Map robot architecture can signif-
icantly facilitate the implementation of human–robot interac-
tive scenarios. We will now reflect on our robot architecture
from two perspectives: component design and communication
of information between components.

Reusability
A general software engineering principle we adopted was
removing application-specific details from as many compo-
nents as possible. In cases where application-specific details are
unavoidable, such as knowledge of the rules of a game, they
were isolated to a single module, allowing all changes to the

application to be made in one location. This decision allowed
us to reuse many components for other scenarios.

In general, components that have communication function-
ality are often reused because of their general importance in
human–robot interaction. The text-to-speech and Multimodal
Communication components were reused in a conversational
application where ASIMO answers questions about the
research ongoing in our lab and its own technology. The Task
Matrix and Environment Map were used together with an
object recognition system to point at and identify objects on a
table. We have also used the Environment Map for planning
pushing motions to manipulate objects on a table [2]. The table
detector component from the memory game was used in the
pushing application (Figure 1) to update the Environment Map
to allow the robot to navigate around the table while walking.
The Environment Map provided up-to-date configurations of
objects on the table, allowing the motion planner to re-plan
when it was notified of changes in the table environment.

Abstraction
Certain components serve as intermediaries between high-level
decision components and low-level robot behavior. Specifically,
they transform high-level directives to low-level expressions of
behavior. The Task Matrix allows high-level symbolic commands
to be transformed into physically realizable actions. The Multimo-
dal Communication component takes symbolic utterances and
coordinates both speech and gestures. Superficially, this role seems
similar to the executive layer in layered robot architectures like 3T.
However, in our architecture the entire layer has been encapsu-
lated and partitioned into several different components with clear
responsibilities. This modularity allows these behaviors to be man-
aged and maintained separately without refactoring other parts of
the architecture. For example in the Task Matrix, by employing a
plug-in based mechanism for expanding the number of tasks, and
providing access to all tasks through a single component interface,
a cleaner mechanism for dynamically adding and removing tasks is
achieved. If the robot’s hardware or joint configuration is modi-
fied, changes only need be made in the Task Matrix while keeping
the rest of the system untouched. The Multimodal Communica-
tion module separates the content in the application from the style
in which that content is expressed during communication. Any
changes done in this component will result in immediately
changed behavior in all applications that use it.

Information Flow
In the area of information communication between components,
we have found that one-to-many patterns, where information
published by one component is consumed by multiple compo-
nents, offer a rich and powerful way to initiate complex, concur-
rent behavior in the robot. For example, during the memory
game, the player may flip a card, generating a detected perceptual
event which gets published by the card detector component to the
rest of the Cognitive Map. Simultaneously, this information is
handled by different component agents for their own purposes.
The interaction module which keeps track of the game’s states uses
this information to determine if the robot should initiate its turn
or wait for a second card to be drawn from the player. Meanwhile,
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the environment map uses the card flip information to update its
knowledge of the card’s identity and current position on the table.

Systems-Based Approach
The benefits of taking a systems-based approach to building an
application enables new valuable information to be generated
and shared as a result of the integration of several components.
For example, in the memory game, a table detector publishes
its 3-D pose information with respect to the camera as well as
the transformed homographic image of the table top. The
card-detector uses this image stream to report position of cards
in terms of 2-D image coordinates. However, since the envi-
ronment map module has access to both the table’s 3-D pose
information, the 3-D transformation of the camera with
respect to the robot, and the 2-D positions of the cards, it is
able to assemble this information to report back 3-D positions
of cards with respect to the robot’s reference frame, allowing
the robot to point at the cards to indicate its intentions.

Independent Behavior
The amount of behavioral independence in each component
agent seems to promote flexibility and robustness in the sys-
tem. For example, a common problem with interactive tasks
involving computer vision is determining when to disable
various specialized object detectors during the course of inter-
action. For example, if ASIMO moves his head to speak to the
player, a table detector may incorrectly assume a table has been
removed from the scene since it would lose track of the object.
One solution is to allow the Task Matrix to report head
motions to the Cognitive Map and allow individual compo-
nents to decide how to appropriately respond to that informa-
tion. In the case of the table detector, if it realized that the
camera motion would be disruptive, it could choose to disable
its processing until it was notified that head motion has
stopped. On the other hand, another object detector compo-
nent could decide to continue to operate if it has more robust
tracking algorithms. Deferring many of the operational deci-
sions to individual perceptual components simplifies the logic
of higher-level components that interact with them.

Synergies
In the course of the memory game, we were able to easily sub-
stitute the card detector and game behavior components with
faster and more robust implementations, without requiring
changes in the rest of the system. This was possible with loose
coupling. However, beneficial effects of the improved behav-
ior do tend to affect overall system performance. A faster mod-
ule that publishes messages consumed by many other
components tends to improve overall system responsiveness
since multiple lags due to processing delay are reduced. To
improve overall robustness in an application, both compo-
nent-level robustness and exploiting multiple sources of infor-
mation are needed. For example, many vision components
suffer from false positive detection events. However, by analyz-
ing concurrent events and other surrounding state informa-
tion, it is possible to identify and avoid such false positive
events. The environment map can rule out objects that are

physically implausible, such as a table that appears to be floating
an unreasonable distance above the floor. A false card flip event
in the memory game could be detected by checking if there is
a coincident table touch event by the table detector.

Conclusion
The relative naturalness and speed of implementing various
phenomena with the Cognitive Map architecture reinforces
our confidence of its suitability for modeling human–robot
interactive applications. This is achieved using a design that fea-
tures components that exhibit behavioral independence and
have abstract interfaces that permit the substitution and reuse of
components. The publish-subscribe communication scheme
facilitates concurrent and coordinated behavior in our robot.

The robotics research community is diverse and highly speci-
alized. This has resulted in a focus on solving problems under a
highly qualified set of conditions. With the Cognitive Map, we
allow components to share information to aid in their individual
processing. Introducing external sources of information to the
system is sometimes seen as cheating or reducing the purity of
the problem. In contrast, we believe that achieving higher levels
of robust performance for interactive applications can only be
done using a systems-based approach where multiple sources of
information can be combined to create new knowledge and
confidence in the robot’s understanding of its situation.

Debugging distributed systems is challenging because of the
difficulty in isolating the source of observed incorrect robot
behavior. In future work, we intend to develop a monitoring
tool that will act as an additional but independent component in
the Cognitive Map architecture. This component will allow
visual inspection of the interrelationships between components
at runtime. Allowing an operator to visualize the dependencies
and flow of information can reveal the component that was the
original source of incorrect information, instead of mistakenly
attributing the problem to an intermediate component. Because
our architecture easily combines perceptual elements, motor task
generation and knowledge representation, we are using this
framework in the investigation of task learning from observa-
tion—in fact, the Cognitive Map architecture was partially
designed with these research problems in mind. By modularizing
the behavior and structure of interactivity in the particular man-
ner described here, we can more easily experiment with various
mechanisms for interaction. By combining different interaction
models, humanoid robots can begin to exhibit autonomous and
adaptive behavior in their interactions with humans.

Keywords
Robot architecture, humanoid robots, communication mid-
dleware, Cognitive Map.
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