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Abstract—This paper describes a task-independent controller
that allows for an easy implementation of vision systems for
processing video sequences. The controller does not have a fixed
dataflow or any fixed steps. The dataflow is constructed by the
modules by describing themselves for the controller.

During operation the modules and their parameters are
selected using an independent decision module. This makes the
system flexible and allows comparison of different learning
techniques and decision strategies. The controller is being used by
the CAVIAR system and its current decision module is a rule-
based system written in Clips.

Index Terms—Intelligent controller, Computer Vision, Video
sequences analysis, Image Understanding

I. INTRODUCTION

ver the past 2 decades there has been a great amount of
work on the development of generic image understanding

front-ends so they can be reused on different image
understanding problems, what could be called an image
understanding shell [7]. We have still to achieve that goal, but
the characteristics of those systems are beginning to get
clearer.

Among the problems that prevented the achievement of such
systems are the complexity and computational cost of low-
level and intermediate level operations necessary for image
understanding. This problem is smaller nowadays since there
are a great number of off-the-shelf Computer Vision libraries
of operators available on the Internet. These libraries provide
the necessary operators for many understanding tasks, but they
need a method to automatically select which libraries to
execute, over which data and with which parameters. That
means an intelligent controller capable of reasoning and
acquiring knowledge about the task, the operators, etc.
Although most researchers agree on the importance of
studying and formalizing image understanding controllers,
there is no agreement, though, on how that should be achieved.
Some researchers ([2] & [9]) advocate addressing the control
problem as a separate problem from the image understanding
task, while others ([10]) claim that vision systems can not be
designed in isolation from the task. The controller described
here tries to achieve a balance between those two approaches.
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The designed controller is independent from the task but it
allows the acquisition of task specific knowledge and acts over
it. It is one further step in creating a shell for image
understanding problems. Its main characteristics are: it is
independent of the desired task but it allows for specific
knowledge to be added; it is independent of the learning and
decision techniques used; it is a centralized controller but it
allows the use of agents1 to compute useful features and
evaluate modules; it does not execute a fixed dataflow but
instead constructs the dataflow for each run by asking the
modules about their descriptions; it is capable of selecting the
best module, between equivalent modules2, for a given frame;
it is capable of selecting the best set of parameters for a given
module at a given frame; and it tries to maximize frame output
rate and output quality

II. CONTROL FOR IMAGE UNDERSTANDING

Up to the 70’s most Image Understanding Systems had
embedded controllers. The study of control techniques began
in the 80’s. Systems from this decade began to use expert
knowledge to control them. Most of those systems were Rule-
based systems [16], Blackboard systems [1] and Semantic
Networks [12]. The main flaw of these systems was that they
were too specific which made then not robust enough when
applied to new domains, probably due to their ad-hoc
construction [9]. In the 90’s a new breed of less ambitious IUS
arose which tried to explicitly model the control process.
Those systems used Bayes Nets [18] and Markov models
([17], [8]). For more information see reference [7] that
contains a good survey on image understanding systems.
Future directions show a second generation of Bayes Nets and
Markov model systems and High Dimensional Decision
making. The controller presented here tries to be independent
of the reasoning technique. This makes it a good environment
for comparing different approaches.

III. CONTROLLER DESCRIPTION

A. The Architecture
The controller described here was designed to be task

independent, although able to use task specific knowledge, if
such knowledge is available. It is written in Scheme and runs

1 Agents here are program that act on behalf of the controller computing
features and/or evaluating data. They are not part of the sequence of operators
that compute the task and although we call them agents they are not currently
autonomous programs. This may change in the future.

2 Modules are considered equivalent if they generate the same output.
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on the Imalab environment [15]. The modules are written in
C++ and use the Caviar Base System [13] to interface with the
controller. The overall architecture of the controller is shown
in Figure 1. To run the controller the only input needed is
which operators to use, here called modules, which agents are
available, and which sequences of video to use (if offline
option). The controller then gets information dynamically from
the modules, from the agents, and from the decision module
and uses this information to run the system. The controller is
independent of the decision-making module. That is achieved
by defining a small set of functions that interfaces the
controller and the decision module. The learning controller is
an offline control for learning task specific knowledge. It is
also independent of the learning technique implemented by the
learning module.

1) Control loop
The control loop executed by the controller is shown in

Figure 2. At the initialization step the controller asks the
modules to auto-describe. This description is an XML string
and contains information such as parameters and their
domains, inputs and outputs. Figure 4 shows an example of
such description. With this information the controller creates
the dataflow, which can have different paths to achieve the
same task. This dataflow is created in a bottom-up approach.
Alternatively, only a goal-output may be given to the
controller. This allows the controller to create the dataflow
using a top-down approach. This dataflow has the advantage
that operators that do not contribute to the computation of the
goal-output will not be included.

An example of dataflow created by the controller is shown in
Figure 3, which shows a graph of the CAVIAR system (see
description on section IV). In this dataflow the squares
represent modules and the ellipses represent data. There are
two modules “sensing1” and “sensing2” that are equivalent.
This means that the controller will select only one of them
during execution. There are no inputs shown because the input
is the camera stream and not a file.

After the initialization the controller executes the loop itself.
For each step of the loop: the controller asks the decision
module for the necessary information concerning the step;
executes the step; and sends the decision module the
information necessary for it to update its knowledge. A brief
description of each step is given below.

• The selection step selects which module to execute.
This implies not only which file to generate next, but
also which module to generate it, if more that one is
available. For example, if there are two versions of the
module that tracks people the controller may select one
or the other depending on which one is better for the
current frame.

• The execution step executes the module selected for a
set of parameters. These parameters are adjusted
depending on some simple features computed over: the
current frame; the inputs for the module, and feedback
given by the modules that generated the inputs.

Fig. 1. Controller architecture

• The module evaluation is done based on each module’s
auto-evaluation plus information acquired during the
offline-learning phase. In addition, during the learning
phase the controller decides if it should trust the
module’s auto-evaluation by comparing it with the
evaluation over the ground truth.

• In the repair step the controller may decide to rerun
some modules with different parameters for one or
more of the previous frames based on the evaluation
result.

B. Controller-modules interface
Each module and agent has an interface with the controller

provided by the Caviar Base system [13]. This base system is
written in C++ and uses the PrimaVision library [15], which
provides the functionality for video and image manipulation,
and the CoreLibrary [6], a powerful multi-platform library for
C++ and implements the CVML language (see below). This
interface is capable of inputting files and parameters, saving
and restoring the program state, and communicating with the
controller. The controller is able to send commands for the
modules and the modules can return feedback. (See [13] for a
more in depth description of the base system). This allows for
the modularization of modules releasing their authors to
concentrate on the specific task of each module

The most interesting aspect of the interface is that it provides
mechanisms for modules to be auto-regulatory, auto-
descriptive and auto-critic, allowing the controller to use this
information to improve the control. This follows an approach
proposed by Crowley & Reignier ([11]). Our approach is a
little different though, since in their case they proposed a
hierarchy of controllers where each controller, and not the
modules, were auto-regulatory, auto-descriptive and auto-
critic.
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Fig. 2. Control loop

1) Module auto-description
Each module describes itself for the controller using an

XML based markup language called CVML [14]. A simple
example is given in Figure 4. This description is very powerful
and essential for the controller. The controller uses the input
and output description to create the dataflow; uses the
parameters descriptions to learn strategies to set them during
execution; uses the output variables to decide which evaluation
agent should be called and much more. A full grammar of this
description is given in [4].

2) Module auto-critic
The controller expects each module to evaluate its outputs.

This evaluation will be passed to the controller by a feedback
mechanism with two levels. The high-level feedback contains
the overall performance of the module and has the number of
objects outputted, the execution duration and an estimate of
the module’s output quality. The low-level feed-back contains
more detailed information like, for example, a confidence level
for each object, the position of each object, etc. Most of the
information provided on the feedback is straightforward to
compute, but auto-estimating the output quality can be
difficult, so the controller does not trust that information a-
priori. Instead, the auto-evaluation is compared with an
evaluation computed over the ground-truth during the offline
learning. From this comparison the controller computes a
confidence factor on the module’s auto-evaluation. If this
confidence is high the module auto-evaluation can then be
used during execution to evaluate the module’s output and to
dynamically learn new decision strategies, if the learning
module has this capability.

3) Module auto-regulation
Besides controlling the modules, the controller is capable of

sending recommendations to the modules. A module then can
decide to auto-regulate its parameters to meet the
recommendation or not. An example of a recommendation can
be: <controls recommendation=”increase threshold” />. The
module then would have to interpret the recommendation and
change its behaviour to reflect it. Although this feature is
already implemented in the Caviar Basic system it is not yet
being used by the controller.

Fig. 3. Example of dataflow constructed by the controller using the modules
information. This data flow shows the complete dataflow of the CAVIAR
system. The modules connected by “>−−<” are equivalent modules.

C. Decision module
The decision module implements the reasoning algorithm

used to make the decisions. It is independent of the controller
allowing the user to plug and play different reasoning and
knowledge strategies. The controller asks the decision module
for suggestions and sends all information used by the decision
module. The decision module does not compute any features,
run modules or agents, and the controller does not do any
reasoning. In order for that independence to work a good
interface between the controller and the decision module is
necessary. The proposed interface uses very simple functions
that can be written in any language accepted by Imalab
(Scheme, C++, Prolog). The current functions used are shown
in Table I.

D. Learning module
The learning module implements the learning algorithm,

such as a rule based system, Bayes network, neural nets system
or any other desired strategy. The learning module receives
from the learning controller the feedback from the module
(auto-evaluation, duration and number of objects); all the
computed features; and an evaluation of the modules output
for combinations of: module, video sequence, parameters and
frame. It can then use this information to create a knowledge
base and learn decision strategies. The learning module can
select how this information will be generated by setting how
the parameter space will be searched and if the parameters
should be considered independent or not.
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<description>
<parameters count="1">

<parameter name="ThetaAz" type="float" optional="no">
<description>Azimuth for the camera</description>
<range from="0" to="360"/>
<default>0</default>

</parameter>
</parameters>
<dataflow>

<inputs count="1">
<input frame="-1" dataset="FoveationPoint" />

</inputs>
<outputs count="1">

<output dataset="RawImage">
<variable name="Time" type="Time" />
<variable name="Image" type="TBitmapByte" />

</output>
</outputs>

</dataflow>
</description>

Fig. 4. An example of a module description in CVML

IV. EXAMPLE OF USE

A. The CAVIAR project
The controller was implemented as part of the CAVIAR

(Context Aware Vision using Image based Active
Recognition) project [5]. The CAVIAR project is funded by
EC and is a collaboration between three institutes: Instituto
Superior Técnico in Lisbon, Portugal; Laboratorie GRAVIR-
IMAG in Grenoble, France; and Institute for Perception
Action and Behaviour, Edinburgh. The main objective of the
CAVIAR project is to recognize behavior in video sequences.
The two applications that the project addresses are: city centre
surveillance, trying to identify fights, unusual events, etc.; and
marketing, trying to identify customer behaviour. The
CAVIAR project constructed a data set with about a 100
sequences of videos with an average length of 1000 frames
each. Every sequence has a corresponding ground truth file,
which is an XML description of the objects (person or group
of persons) found in each frame. Each object is encased in a
box and a scenario is attached to it. A scenario is a set of 4
attributes: movement, role, situation and context. See
CAVIAR Home page [5] for details on the ground truth
format.

B. The decision module implemented
To test the controller, two decision modules have been

implemented: a rule-based system using Clips and a back-
propagation neural net system. In this paper only the rule-
based system will be described.

The rule-based decision module is able to select the next
module to execute and to suggest parameter values using both
learned and user defined facts and rules. It allows an expert
user to provide rules in addition to the learned ones, covering
cases not addressed by those. Examples of user rules are given
in Figure 5. The rules are written in Clips, what makes it easy
to reuse them since Clips is used as rule manager in many rule
based systems. In addition to Clips commands the decision
module provides a set of facts and functions to help the user.

TABLE I
Control-Decision module interface functions

Name Description
initializeknowledgebase Initializes the files and defaults necessary to run the

knowledge module
knowledgebaseok? Returns the status of the knowledge base (if it is

initialized and ready to be inquired )
finalizeknowledgebase Finalize the knowledge base; close files, end logs
updateknowledge Asks the decision module to make the knowledge

base up-to-date.
resetknowledgebase Puts the knowledge base in to the initial state
getnextmodule Selects the next module to run
getparametersuggestion Returns a suggestion of the value to be used for a

module’s parameter
getdatasuggestion Returns the module that created the file to be used
updatedata Updates the data base for a new file
setprogdone Tells the decision module that a module was

executed
setprogout Tells the decision module that a module can not be

executed
savefeedback Saves the module feedback on the knowledge base
saveframeinfo Saves the frame features on the knowledge base
getfeaturestocompute Returns the name of features to compute for this

run of the system

The facts include: the current frame; features computed over
each frame; the module’s feedback and evaluation, etc. The
functions include functions to: set priority between programs;
force or deny the execution of a program; set parameter values
or increments, etc. The rules in Figure 5 exemplify some of
those facts and functions.

The first rule states that if the module sensing1 is on a
frame for which feature luminance is between 0.5 and 0.2 then
module sensing1 has a priority over module sensing2 of 1.2.
This means that when the comparison criterion3 is tested,
sensing2 will only be selected over sensing1 if its criterion
multiplied by 1.2 is still less than sensing1’s criterion. The
second rule states that when the output rate of the system
computed at a given frame is less than 80% of the desired
output rate the parameter ThetaAz for module sensing1
should be decremented by 50%.

C. The learning module implemented
The learning module implemented is very simple. It

computes a function of each parameter for each feature and
creates rules to do hill-climbing on them. Here the features
are assumed independent for simplicity. We are aware that
this assumption does not hold in many cases. A neural nets
learning module is being finalized and more sophisticated
versions of the learning module are planned, but that is a first
implementation of the learning module as a proof of concept.
The rules and facts exemplified here were computed over a
different system from the one shown on Figure 3. Figure 6
shows a dataflow graph of this system, which is a simplified
version of the CAVIAR system and uses 6 modules. Module
tracker tracks objects and puts boxes around them; grabber
gets a frame from disk4; modules movement1 and movement2
hypothesize about the movement of objects (active, inactive,

3 Currently the knowledge module is able to use the following features as
comparison criterion to select modules: time they were ready last; time they
executed last; frame they executed last; last duration; best evaluation and no
feature. More features will be incorporated with time

4 In this case the controller is running offline.
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(defrule luminance1
(userrules)
(proginfo (prog sensing1) (name frame) (value ?fr))
(frameinfo (number ?fr) (name Luminance) (value ?v))
(test (and (< ?v 0.5) (>= ?v 0.2)))
=>
(setprogpriority sensing1 sensing2 1.4)

)
(defrule outputrate

(userrules)
(currentframe ?fr)
(frameinfo (number ?fr) (name outputrate) (value ?v&:(< ?v 0.8)))
=>
(setincrementrate sensing1 ThetaAz -0.5)

)
Fig. 5. Example of user rules. The modules referred here relate to the
dataflow shown on Figure 3.

walking, or running) using two different approaches (logical
and probabilistic); module role hypothesizes about the role of
objects; and module context hypothesize about the context
(behaviour) of objects.

The function computed for module movement1 and its
parameter Base_Classify_Threshold is shown in Figure 7. The
quality feature is the module auto-critic, which in this case was
fixed at 1, and the evaluation is the result of the ground truth
comparison. From this function a set of facts and rules are
created to be incorporated in the knowledge base of the
decision module. Figure 8 shows two facts and one rule
generated for module movement1, parameter Base-Classify-
Threshold, and feature evaluation.

D. Running the controller
We tested the controller over the simplified version of the

CAVIAR system (see Figure 6). The system is able to control
the system, selecting between movement1 and movement2
depending on features computed over the output of modules
and selecting the best values for parameters. Figure 9 shows a
graph where modules are selected depending on the average
distance of the boxes from the plane of the camera. Each point
represents a module. Points with y coordinate greater than zero
represent the module selected by the control for the frame. The
module’s y coordinate represents the value of the feature when
the module was executed. The module that was not executed is
plotted with y = 0.

From the graph is easy to see that when the feature goes
below a threshold of 215 the control switch modules. This
rule is user defined5. Figure 10 shows the evaluation of the
results of module1 when the system is executed over 30
frames. The graph is cumulative in the sense that at each
frame a file containing all previous frames is evaluated.

Nevertheless, at each time the module computes the
movement for all boxes of all frames what means that values
for previous frames may be changed.

5 A learned rule was not used because module movement1 was always the
best module independent of the feature used consequently module
movement2 would never have been selected. It is important to note that we
are not claiming that the technique used on module movement1 is better or
worst than the used on module movement2. Those modules are still in
development and they are used here only as tools to show the execution of the
controller

Fig. 6. Simplified version of the CAVIAR system used to learn rules for the
decision module. Here are two equivalent modules movement1 and
movement2.

The graph shows that the controller was able to maintain a
high level of quality while changing the module’s parameters.

V. FUTURE WORK

The proposed controller is being used on the CAVIAR system
to control the execution of modules, although, to show the full
potential of it some work must still be done. The repair phase
of the control loop is not implemented yet; more features must
be incorporated to the controller so decisions can be made
more accurately; more modules must be incorporated; etc.

Nevertheless, the more important future step is the
construction of alternative decision and learning modules. An
learning module using neural-nets similar to the ADORE
system [8] is been finalized and others as a Bayes network
module or adjusting the parameters by constructing a function
by least square approximation [3] are being considered.

VI. CONCLUSION

We presented a task-independent controller for video
sequence analysis, which is a new step in the search for a shell
for image understanding system. This controller is independent
of the reasoning and learning techniques, which makes it very
useful for testing and comparing those techniques.
Incorporating a new learning technique to the system is very
easy and is done by a simple set of interface functions that can
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Fig. 7. Auto-critic (quality) and output evaluation for module movement1.

be implemented in three different computer languages. The
Caviar Base system provides easy to use functions that allow
the modules to be auto-descriptive, auto-critic and auto-
regulatory.

In order to show the potential of such controller we
developed a decision module in Clips that accepts learned and
user defined rules and facts. The current controller is being
used by the CAVIAR project to run a simpler version of its
modules.

A lot of work still needs to be done to show the full
potential of the system, especially the construction of better
decision modules.

(of searchrate (module (symbol-to-instance-name
movement1)) (parameter (parametername movement1
BASE_CLASSIFY_THRESH)) (feat evaluation) (begin
1.00000) (end 3.66667) (rate 0.001062)) ))

(of searchrate (module (symbol-to-instance-name
movement1)) (parameter (parametername movement1
BASE_CLASSIFY_THRESH)) (feat evaluation) (begin
3.66667) (end 6.33333) (rate –0.005716))

(defrule
learned_movement1_BASE_CLASSIFY_THRESH_evaluation

(userrules)
(proginfo (prog movement1)(name frame)(value ?fr))
(proginfo (prog movement1)(name evaluation)

(value ?gl&:(< ?ql 0.900000)))))
(object (is-a floatpar) (name

[movement1BASE_CLASSIFY_THRESH]) (value ?v))
=>

(bind ?inc (computeincrementrate movement1
BASE_CLASSIFY_THRESH evaluation upper ?v ?gl))

(setincrementrate movement1 BASE_CLASSIFY_THRESH
?inc)

)
Fig. 8. Examples of facts and rules learned by the learning module for the
module movement1.

Fig. 9. Module selection. The module selected is represented by a point with
the feature value and the one not selected with a point over the abscissa.

Fig. 10. Evaluation of the output of module movement1 by comparing it with
ground truth.
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