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Abstract— This paper presents an architecture for cognitive

analysis of streaming video, in which a new module can easily be
plugged in, to add to or even compete with existing functionality.
This allows the implementers to focus on the key scientific issues
instead of struggling with the details of the implementation.

The architecture is distributed and runs independently of the
underlying computer architecture and can run transparently
across one or many different operating systems in a larger
distributed system. This architecture focuses on several key
Computer Vision issues, such as multi-level global and local
control, automatic dataflow based on auto-descriptive self-
regulating independent modules that come together to form a
whole based on the characteristics of the individual and the needs
of the system rather than a static flow diagram.

Index Terms— Autocriticism, Autodescription, Autoregulation,
Cognitive Architecture, Computer Vision, Modular Architecture.

I. INTRODUCTION

N this paper we will present the CAVIAR architecture for
Cognitive Computer Vision, which allows the integration of

many disparate modules into a system which performs
cognitive analysis of video streams. Each module has complete
plug-and-play functionality, using a straightforward interface
that allows the global Controller to obtain detailed information
about its functionality, its parameters and the quality and
quantity of its results, and allows the Controller and other
modules to make requests to alter its performance.

We describe the full architecture, which is based around a
centralised Controller enforcing the global goals of the system
of a large number of Modules. Each module functions as an
independent unit, about which the Controller has no prior
knowledge, but which will fully describe itself to the extent
that the Controller knows exactly which function the Module
performs including a full understanding of its parameters and
its input and output.

Our model is based on previous work on process-based
computer architectures [1], [2] with specific focus on dividing
a system of modules into process federations where each has
relatively autonomous control [3], although they participate in
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the system where the flow of data is not fixed [3].
The CAVIAR architecture has the ability to configure the

system automatically at start-up as well as dynamically
reconfigure parts or all of the system at runtime as needed. We
will explain how each module describes its own capabilities
and parameters, and how the Controller uses this information
to become more robust to changes in the visual scene or when
the system is running low on resources. Lastly, we will
illustrate how the CAVIAR system can be distributed to utilise
many computers, including those running a different operating
system or even based on a different architecture.

II. PROCEDURE FOR PAPER SUBMISSION

Cognitive processes have to be very adaptive and able to
deal with a great number of events and situations which cannot
be fully specified at design time. Each process or module must
be able to both be regulated individually and as part of a
group, either by a local control unit or a global one with
sufficient local knowledge.

Often a Cognitive Vision System will need access to many
more modules than are needed at any one point in time, to
cope with changes in the perceived environment or to its own
internal state and goals. To perform in real-time all modules
must be kept in an idle state waiting for a command to start
processing data or at least be readily available when needed. A
local or global control unit can then choose which modules
would be most suitable for the current situation and even test
several ones before making that determination. An advanced
Controller could take the output from several modules, each
performing the same task, and use all the information going
forward.

A. Global versus Distributed Control

There are two main approaches to controlling a cognitive
system [17]. Either one employs a global controller [16] which
is aware of all parts of the system and has to know everything
about them or one can use distributed control where sections
of the system are controlled independently of the others [2].
Most systems use the global control approach as this is often
easier and creates a more predictable application, although
having a global controller makes scaling more difficult [2].

Distributed control is often hierarchical in nature, either
divided into two levels with many local region controllers and
a global controller interacting with these [15], or a many-level
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hierarchical structure where every few modules are controlled
by one unit, which is itself controlled by a master of units, and
so forth [2]. Even in the latter case there usually is an overall
global controller that governs the goals and purposes of the
system as a whole.

B. Global versus Distributed Dataflow

Dataflow regulation is of utmost importance in a Cognitive
System as often the same data is used by several processes at
the same time [17,18,19], and the modules downstream need
the data in the correct order. This can either be done using a
controller that will pass the data to the modules when
available, or by a Blackboard-type architecture where modules
subscribe to the data types or data stream needed and waits for
these to become available [5].

Dataflow governs when which module can work on what
dataset, and is in most cases determined by a combination of
what specific modules need and what the overall goal of the
system is. The dataflow can either be predetermined where the
system designer dictates the exact path the data has to follow
or dynamically adjusted to fulfil the system goals [15]. The
latter can be split into two groups, namely globally versus
locally determined flow.

Globally controlled dataflow means that a global controller
with knowledge of the whole system knows who needs which
data when and based on system goals makes changes to the
flow of data as needed. This approach is the more popular
approach when dealing with high volume media data streams,
both because it is easier to manage, but also due to the inherent
resource loads these streams can create when not managed
correctly.

Distributed dataflow is often used with distributed control
systems, where each module or group of modules determine
dynamically which data they need when, and then request this
data from the system as a whole. This is a cornerstone of the
Blackboard-based architecture, which is excellent at handling
discrete messages, but was found unable to scale or indeed
handle the traffic efficiently when dealing with massive
amounts of streaming data. Recently, a new type of
Blackboard architecture named Psyclone was proposed [5]
using Scheduling Whiteboards, which are Blackboards capable
of handling both messages and media streams, and schedule
subscriptions to both based on module and data priorities.

Although this approach was considered for the work
presented in this paper, it was found that a global controller
with globally controlled dataflow was more compatible with
earlier work by the partners, and that a single controller could
implement a very advanced dynamic rule and learning system,
inspired by the work on ADORE [14] and VISIONS [19].

C. Distributed Systems

Most Cognitive Vision Systems require more resources than
can be provided by one single computer, which means that
strategic distribution of processes across a network of
computers becomes very important. Other than the obvious
issues of running different pieces of code on more than one

computer and how to regulate this dynamically, one of the
most crucial functions of such a system becomes making data
available to the right module running on the right computer at
the right time. Network delays can for the most part be
predicted or at least anticipated, but the dataflow of such a
system is vastly more complex and more resembles a chart
organisation task than a simple flow diagram.

III. THE CAVIAR ARCHITECTURE

The CAVIAR Architecture uses one central Controller that
knows about every module in the whole system, on both a
global and local level. It controls the dataflow and schedules
each module when the appropriate data is available. It
regulates each module by either setting parameters directly or
by requesting that the module regulate itself to achieve a
certain goal, such as ‘find more objects’ or ‘output less
features’. Each module obtains data from one or more sources
and outputs one or more datasets plus feedback information.
The feedback includes information on how well the module
thought it performed and what it ideally would need the next
time around, either for recalculating the current output or when
the subsequent data becomes available.

A. The CAVIAR Controller

The CAVIAR Controller is written in a combination of
Imalab Scheme [8], C++ and Clips, drawing on the strengths
of all three and combining the versatility of Scheme with the
efficiency and speed of C/C++ and the logic and efficient rule
handling from Clips.

On start-up the Controller reads a minimal initialisation file
containing a list of module names which can be used. Each
module is instantiated and questioned for functionality,
capability and for a full description of every parameter as well
as the required inputs and datasets produced as output. From
this list and provided with overall goals of the system the
initial dataflow is calculated and the modules that come into
play are initialised.

From then on the dataflow is auto-regulated based on the
performance and feedback of the individual module and
overall goals of the system. If a module produces a
substandard response, it may be replaced by another module
by inserting the new one in the place of the old and asking it to
recompute the same data, or they may both continue to
produce results and a split in the dataflow is created. A module
with a substandard output will more frequently be asked to
recompute with slightly different parameter values, set either
directly by the Controller or indirectly by asking the module
for more of one feature and less of another.

A more detailed description of the CAVIAR Controller can
be found in [7].

B. The CAVIAR Modules

The CAVIAR Modules are all written in C/C++ for
efficiency and draw on the combined resources of two
libraries, the INRIA PrimaVision and CMLabs’ CoreLibrary,
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described in more detail in Section V (The CAVIAR Base
Libraries). However, the CAVIAR modules are in no way
restricted to only using these and frequently include other
libraries, such as Intel’s OpenCV and Clips.

The CAVIAR Modules operate on three basic principles,
namely auto-description, auto-criticism and auto-regulation
[2].

1) Auto-description
Each module provides a full description of its input, output

and parameters when the Controller asks. The communication
is handled transparently by the Base System (see Section IV)
and the implementer describes the module in CVML [6] – an
XML-based language extended for Computer Vision data
streams.

Fig. 1 shows a full auto-description of a module that groups
individual low-level image features previously computed by
other modules. As input it takes two datasets, one called
RawImage and one called PointFeatures. These datasets are
defined by the modules that produce them and are required for
this module to run so the controller needs to make sure that the
modules producing these have run successfully.

The module produces two output datasets, one called
Groups and one called GroupHierarchy. The Groups dataset
has two variables; Time is a timestamp obtained from the
RawImage and GroupList is a list of named groups of features
found. These groups contain only the features and the next
dataset contains information on the group hierarchy. The
GroupHierarchy dataset contains two variables; Time which is
the same timestamp as above and GroupPairs which is a list of
statements Gid1 ⊂ Gid2, indicating group containment relations.

The module description also specifies the module’s
parameters. Each has a type field, an optional field, a textual
description, a default value and either a range of allowed

values with a step size or a collection of discrete values, which
the parameter can have.

The Controller uses these parameter specifications in two
ways; for online control to regulate parameters by using rules
during the normal system operation and for offline learning
when comparing its own performance with training sets by
exploring the whole or parts of the whole parameter space.

When executing the module has access to the input datasets
it specified in its description. These are provided by the Base
System and will be kept until the module and the Controller
agree that this dataset is no longer needed. The module has full
access to its own most recent variables and output (a number
of steps back in time, can be specified in the auto-description)
as well as its parameters that may have been set or changed by
the Controller. Based on all of these the module can now
compute its output datasets and provide feedback informing of
its results.

2) Auto-criticism
High level feedback consists mainly of a quality and

quantity measurement and the low level feedback can contain
as much detail about the results as it wishes to inform the
Controller about. As part of the feedback about its inputs it
can also make requests to the Controller, such as I need more
of this and less of that which the Controller then knows to
relay to the module producing the relevant input dataset.

An example of both high and low level feedback can be
seen in Fig. 2. The high-level feedback contains information
about the quality and the quantity of the output, which is 98%
and 2, respectively. Also included is information about when
the module did its processing and how much time and CPU
resources it took. In this case the computation lasted slightly
over 100 milliseconds of which 50 milliseconds of CPU time
was spent.

The low-level feedback provides more detailed information
about the results, such as the location of each of the tracked
entities.

3) Auto-regulation
The Controller can choose to regulate the module by

directly setting or changing the parameters described by the
module. This is great for a system which has significant offline

<description>
<parameters count="5">

<parameter name="MaxGroups" type="integer" optional="no">
<description>Maximum number of groups</description>
<range from="1" to="100" step="5" />
<default>10</default>

</parameter>
<parameter name="MinGroups" type="integer" optional="no">

<description>Minimum number of groups</description>
<range from="1" to="100" step="5" />
<default>10</default>

</parameter>
.....

</parameters>
<dataflow>

<inputs count="2">
<input dataset="RawImage" />
<input dataset="PointFeatures" />

</inputs>
<outputs count="2">

<output dataset="Groups">
<variable name="Time" type="Time" />
<variable name="GroupList" type="GroupList" />

</output>
<output dataset="GroupHierarchy">

<variable name="Time" type="Time" />
<variable name="GroupPairs" type="GroupPairList" />

</output>
</outputs>

</dataflow>
</description>

Fig. 1. An example of a full module description in CVML. This module takes
many individual point features as input and groups them based on their spatial
proximity.

<feedback level="high">
<result quality="0.98" quantity="2" />
<run starttime="1101469301.262" endtime="1101469301.363" duration="101023"

cpu="50140" user="30130" kernel="20010" />
</feedback>

<feedback level="low">
<entity id="1" type="object" quality="0.98">

<box x="10" y="12" h="45" w="58">
</entity>
<entity id="2" type="object" quality="0.98">

<box x="10" y="12" h="45" w="58">
</entity>
<run starttime="1101469301.262" endtime="1101469301.363" duration="101023"

cpu="50140" user="30130" kernel="20010" />
</feedback>

Fig. 2. An example both high and low level feedback from a module, which
informs us that it is 98% confident about the two objects it found, along
with information about when the module started and finished and
microsecond details about how long and how much resources it took. The
low-level feedback adds more detailed information about the tracked entities
and their location using the CVML language [6].
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learning prior to running online, but for systems without much
prior learning using the auto-regulation feature of a module is
more robust.

Auto-regulation is part of the feedback protocol, where
other modules or the Controller itself can make fuzzy requests.
These usually take the form of wanting more or less of a
specific feature or more generally wanting higher quality
output. The module implementer knows best how to tweak the
parameter to obtain the required result.

This is used extensively when the Controller wishes to either
recompute one module’s output until the needed quality or
quantity level has been reached, or in the situation where a
whole arm of the dataflow needs to be recomputed. Often this
is also used to select between two equivalent modules.

IV. THE CAVIAR BASE SYSTEM

The CAVIAR Base System consists of a code base which all
the modules are based on and inherit from and which the
Controller interfaces with. The Base System implements the
Base Module, from which every module is derived and hence
inherits all its functionality automatically. The Base Module
and other support classes such as the Module Variables form
the bulk of the Base System and are written purely in C++.

Each CAVIAR Module needs to have only two functions,
init() and compute(), and to have its auto-description in the
constructor. Everything else is handled transparently by the
CAVIAR Base System, which provides the communication to
the Controller and the other modules, and manages parameters,
internal variables and the input and output datasets.

There are two sides to the Base System, the Controller
interface and the Module Implementation interface. The
former provides full support for everything the Controller
needs from the module in terms of data I/O, access to
parameters and feedback. The latter provides the modules with
all the data and makes sure that everything is initialised.

A. The Controller Interface

The Controller communicates with the modules via an API
specifically designed for this purpose. As seen in Fig. 3 the
Base Module holds all of the data, feedback and parameters
and merely allows the Controller and the Module
Implementation to access these.

The Controller can query and set the values of existing
parameters of several different types, such as integer, floating
points, strings, vectors and more. It can enter requests and
obtain feedback, redirect the input and output, and save the
current or restore previous states in preparation for
(re)computing results using the command interface.

The communication between the Controller and the modules
happens either directly by calling the API functions or
transparently via messages using the network. See the Section
VI (The CAVIAR Communication) for more detail.

B. The Implementation Interface

Fig. 3 also shows that the Implementation Layer has a very
similar access to the Base Module, in that it can read and set
parameters, handle requests and provide feedback.

Instead of the command interface it has a generic Data API,
from which it can obtain any data from previous runs (usually
limited by the Controller to between 20 and 50) and access the
current input datasets which it requested in its description.
Using all this information it computes the output datasets
required of it, which it marks as output using the Data API.

The high-level feedback is usually a few assessments of the
quality and quantity of the results, but the low-level feedback
can be as detailed as the module wants. For example, if the
module is an object tracker and it found 20 objects in the
scene, of which it is quite sure about 10, it may produce high-
level feedback with quantity = 20 and quality = 0.5 and in the
low-level feedback provide detailed information about each
target including how confident it is about each of them. This
may help an intelligent controller to determine how reliable the
result is or how closely it matches the expected result.

C. The Base Module

The Base Module in Fig. 3 is the main handler of all the
data, parameters, requests, feedback and commands, which it
will route to the appropriate destination. The Controller will
tell the Base Module from where it should obtain its input
data, which could be one or more files or could be a network
source.

Likewise, the Controller will command that the output
datasets are either saved to a file or made available to other
modules on request. The conversion of datasets to and from
the common readable CVML [6] is handled transparently.

Every individual run has a unique ID and when the
Controller wants to recompute either one or a whole sequence
of runs, the module will handle the restoration of previous
states, which it has stored in a buffer for safe keeping.

Parameters Feedback Requests Commands

Output CVML

Parameters Feedback Requests Data I/O

Input CVML

Fig. 3. A diagram of the Controller and Implementation interfaces to
the Base Module. The input datasets (CVML) come into the Base
Module from the left and when the Controller commands the module
to run the module will compute the output datasets (also CVML),
which are seen coming out on the right. The Controller can vary
parameters, make requests and obtain feedback which the module
implementation produces.
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V. THE CAVIAR BASE LIBRARIES

As mentioned earlier in this paper, the foundation of the
CAVIAR system rests on two powerful libraries. The
CAVIAR Base System is based on the CoreLibrary, which
provides the independence of operating system and
architecture needed. The PrimaVision library provides vision
functions for the modules with full support for working with
advanced vision.

The PrimaVision library [8] is part of the Imalab vision
package and contains a full set of the basic functionality
needed by any vision or video system, such as edge detection
and optical flow. Also included is advanced functionality
stemming from recent research by the INRIA vision group,
such as object identification by elastic graph matching [11]
and Gaussian derivatives [12].

The CMLabs CoreLibrary [13] is a multiplatform object
library for C++ with transparent support for UNIX, Windows,
Mac OSX and PocketPC. It provides many of the common
objects found in Java (Strings, Collections, Queues, Math
objects and built-in XML parsing) and has the ability to send
objects and data across the network using Messages and
Streaming Media. The network communication layer supports
and autodetects additional protocols such as HTTP and telnet.
Additionally, the CoreLibrary supports OS independent multi-
threading including mutexes and semaphores.

VI. THE CAVIAR COMMUNICATION

The Controller chooses to run the modules in either a file-
or network-based communication mode. The former is mainly
used for offline testing or development, where every output is
saved to a separate file and can be evaluated later. This mode
also has the advantage that a single or a few modules can be
run on the whole video set repeatedly in isolation, using a
complete set of real inputs from previous runs.

The content of the dataflow is pure CVML which encodes
both textual and binary information into an architecture
independent data stream. This is very suitable for distributed
systems, where the data has to travel across networks, but is
equally suited for communication with other systems, which,
even with no knowledge of the CAVIAR architecture, can use
the information and even participate as a module, if required.

Network-based communication is used for online running or
offline training. Each module auto-detects whether the
intended recipient is in the same executable and can receive a
direct in-memory transmission or it is located in a separate
executable on the same or a different computer. If so, the data
is automatically converted to CVML [6] and transmitted using
TCP/IP communication. By converting to CVML it is ensured
that even if the receiver is running on a completely different
operating system or architecture that the data is still valid and
understood.

VII. THE CAVIAR COMPUTER VISION SYSTEM

The first implementation of the CAVIAR architecture was
used for the CAVIAR project, funded by the EC as a
collaboration between three institutes; Instituto Superior
Tecnico in Lisbon, Portugal, Laboratoire GRAVIR-IMAG in
Grenoble, France and Institute for Perception, Action and
Behaviour in Edinburgh. The goal was to design a Computer
Vision architecture which could observe human beings and
analyse and predict their behaviour in common scenarios such
as street scenes and shopping centres.

The CAVIAR architecture has been useful for the
independent development of modules and controller for
incremental construction of a combined system. Most modules
were created and tested independently and when ready
seamlessly integrated into the whole, either adding to the
functionality or augmenting existing functionality. The
Controller was also developed separately, initially working on
mocked up modules and gradually integrating the real modules
as well as increasing its own abilities to govern the system,
first mostly based on rules, but later based on learning from
training sets.

It took less than a week to set up the first version of the
system, once the architecture was in place, and additional
modules could be implemented in a few minutes, as they
became available from the other teams.

When the Controller starts it creates an initial version of the
dataflow from the auto-description of the modules. From this it
decides which module needs to run when with which input. An
example of an automatically constructed partial dataflow is
shown if Fig. 4.

The square boxes denote modules and the round objects are
datasets. In this example, the Grabber retrieves the next image
from the source (a camera or an offline file) and produces a
RawImage dataset, which includes the image data and a
timestamp. This dataset is requested by the Tracker which in
turn produces a TrackedObjects dataset to be used by any
modules who requests this dataset.

In the event that two modules produce the same dataset the
Controller will consider these competitors and will see which
produces the best output, either simply based on the feedback

Fig. 4. Initial (partial) dataflow example, created by the Controller from the
auto-description provided by the modules themselves. Example of dataflow
for two equivalent modules which both take the same dataset RawImage as
input and both produce the same dataset TrackedObjects as output. The
equivalence is shown by the crossover lines connecting them.
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of the module itself, based on predetermined or learned rules
or will even retry the computation of both until one wins or
they both agree. A visual graph example of this is seen in Fig.
4, where two modules produce the TrackedObjects dataset and
the Controller displays them as equivalent by the crossover
lines connecting them.

Often, some parts of a dataset are used by some modules
and other parts by others modules. To optimise performance
and efficiency a dataset can then be split into two or more
streams and modules can request one or more of these. An
example of this is seen in Fig. 5.

VIII. CONCLUSION

We have presented a plug-and-play Cognitive Vision
Architecture called CAVIAR for analysing video streams. It
has a global controller with full knowledge of the system as a
whole as well as of the individual modules. Each of these are
auto-descriptive and the system dataflow is automatically
computed based on these and adjusted based on feedback from
the modules and on the overall goals and performance required
from the system. The modules are auto-regulative in that the
Controller or other modules can request that it modifies its
own parameters to achieve a desired output. And each module
is auto-critical as they continuously evaluate their own
performance and report this back to the Controller. Finally, we
presented the CAVIAR Computer Vision System which based
on this architecture allowed us to implement a fully working
cognitive vision system in less than a week, and add new
modules in only a few minutes.
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